14. A Remark on the Global Markov Property for the d-Dimensional Ising Model

By Yasunari HIGUCHI

Department of Mathematics, Faculty of Science, Kobe University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 13, 1984)

1. Introduction. Let Z^{a} be the *d*-dimensional cubic lattice and $\Omega \equiv \{-1, +1\}^{z^{a}}$ be the configuration space, equipped with the product of discrete topology. \mathcal{F} stands for the Borel σ -field of Ω . The sub σ -fields $\{\mathcal{F}_{Y}; V \subset Z^{a}\}$ are defined by

$$\mathcal{F}_{v} \equiv \sigma\{\omega(x); x \in V\}$$

A probability measure μ on (Ω, \mathcal{F}) is said to have *local Markov* property (LMP), if for every finite $V \subset Z^{d}$,

(1) $\mu(\cdot |\mathcal{F}_{v}c)(\omega) = \mu(\cdot |\mathcal{F}_{\partial v})(\omega)$ on \mathcal{F}_{v} μ -a.s. ω , where $\partial V \equiv \{x \in V^{\circ}; |x-y| \equiv \max\{|x^{i}-y^{i}|; 1 \leq i \leq d\} = 1$ for some $y \in V\}$. If (1) holds for any $V \subset Z^{a}$, then μ is said to have global Markov property (GMP). It is known that (LMP) does not necessarily imply (GMP) (see for example, [4], [6], [7]). Therefore the question is when (LMP) implies (GMP). In this note, we discuss this question for the *d*-dimensional Ising model. The Hamiltonian of this model is given for each finite $V \subset Z^{a}$, with magnetic field *h*, and the boundary condition $\omega \in \Omega$, by

(2)
$$E_{v}(\eta \mid \omega) = \sum_{x,y \in V} J_{x,y}\eta(x)\eta(y) + \sum_{x \in V} \sum_{y \in \partial V} J_{x,y}\eta(x)\omega(y) + h \sum_{x \in V} \eta(x),$$

where $J_{x,y} = J_{0,|x-y|} = 0$ unless |x-y| = 1. For $\beta > 0$, the corresponding finite Gibbs state for (2) is given by

(3) $P_{\beta,\nu}(\{\eta(x), x \in V\} | \omega) = (\text{normalization}) \cdot \exp\{-\beta E_{\nu}(\eta | \omega)\}.$ and

 $(4) \qquad \qquad P_{\beta,V}(\{\eta(x) = \omega(x), x \in V^c\} \mid \omega) = 1.$

A Gibbs state for the Ising model (2) is a probability measure μ on (Ω, \mathcal{F}) satisfying

(5) $\mu(\cdot | \mathcal{F}_{v^o})(\omega) = P_{\beta,v}(\cdot | \omega) \mu$ -a.s. ω , for every finite $V \subset \mathbb{Z}^d$.

By definition, any Gibbs state for Ising model (2) has (LMP), but not every Gibbs state for (2) has (GMP) (a counterexample is given in [4]). If $J = \{J_{x,y}\}$ satisfies Dobrushin's uniqueness condition, then the unique Gibbs state has (GMP) ([2], [3]).

In this note, we assume that the Ising model (2) has attractive interaction; $J_{x,y} \leq 0$ for every pair $x, y \in Z^a$. In this case, it is known that there exists a critical $\beta_c, 0 < \beta_c \leq \infty$ (the last equality holds iff d=1), such that Gibbs state is unique for $\beta < \beta_c$, and non-unique for