Small Deformations of Certain Compact 11. Class L Manifolds

By Asahiko YAMADA

Department of Mathematics, Sophia University

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1984)

The notion of Class L manifolds was introduced by Ma. Kato [1]. The most significant property of Class L is that any two members of Class L can be connected complex analytically to obtain another Class L manifold. The purpose of this note is to construct a series of compact Class L 3-folds $\{M(n)\}_{n \in N}$ inductively and to determine their all small deformations. Details will be published elsewhere.

We denote the 3-dimensional complex projective space by P^{3} 1. of which the system of homogeneous coordinates we write $[\zeta_0: \zeta_1: \zeta_2: \zeta_3]$. For any positive real number r, we define a domain U_r in P^3 by U_r ={[ζ_0 : ζ_1 : ζ_3 : ζ_3] $\in P^3$ || ζ_0 |²+| ζ_1 |² < r(| ζ_2 |²+| ζ_3 |²)}. A complex 3-fold X is said to be of Class L if it contains a domain which is biholomorphic to U_1 , in other words, if there exists a holomorphic open embedding of U_1 into X. Let σ be a holomorphic automorphism of P^3 defined by $\sigma([\zeta_0:\zeta_1:\zeta_2:\zeta_3]) = [\zeta_2:\zeta_3:\zeta_0:\zeta_1].$ For any real number ε greater than 1, we denote the domain $U_{\epsilon} - \overline{U_{1/\epsilon}}$ by $N(\epsilon)$ where $\overline{}$ indicates the topological closure. Then it is easy to see that U_r is isomorphic to $U = U_1$ and that $\sigma(N(\varepsilon)) = N(\varepsilon)$.

Suppose that X_1 and X_2 are Class L manifolds with open embeddings $i_{\nu}: U_{\epsilon} \to X_{\nu}, \nu = 1, 2$. Put $X_{\nu}^{*} = X_{\nu} - \overline{i_{\nu}(U_{1/\epsilon})}$. We define a complex manifold $Z(X_1, X_2, i_1, i_2) = X_1^* \cup X_2^*$ by identifying a point $x_1 \in i_1(N(\varepsilon)) \subset X_1^*$ with the point $x_2 = i_2 \circ \sigma \circ i_1^{-1}(x_1) \in X_2^*$. $Z(X_1, X_2, i_1, i_2)$ is also a Class L manifold because $N(\varepsilon)$ is of Class L. Remark that the construction of $Z(X_1, X_2, i_1, i_2)$ depends on the choice of the open embeddings i_1 and i_2 .

Now we define a compact Class L manifold M = M(1). Let l_0 and l_{∞} be projective lines in P^{3} given by

$$l_0: \zeta_0 = \zeta_1 = 0, \qquad l_\infty: \zeta_2 = \zeta_3 = 0,$$

and put $W = P^3 - l_0 - l_{\infty}$. Consider the holomorphic automorphism g: $[\zeta_0:\zeta_1:\zeta_2:\zeta_3] \mapsto [\zeta_0:\zeta_1:\alpha\zeta_2:\alpha\zeta_3]$ of W, where α is a complex number with $0 < |\alpha| < 1$. Letting $\langle g \rangle$ be the infinite cyclic group generated by g, we define the complex manifold M to be the quotient space of W by Taking real numbers β , γ , δ such that $|\alpha| < \beta < \gamma < \delta < 1$, we define $\langle g \rangle$. subdomains U_0 , U_w , U_∞ in W as follows:

No. 1]