103. On Some Euler Products. II

By Nobushige KUROKAWA

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1984)

§1. Meromorphy of Euler products. Let $E = (P, G, \alpha)$ be an Euler datum in the sense of Part I. We describe a sufficient condition making E and $\overline{E} = (P, G \times \mathbb{R}, \overline{\alpha})$ complete when $\mu(P) < d(P)$ ($<\infty$). We follow the notations of Part I (see [1]).

We say that E satisfies the condition L if E satisfies the following (I)-(III):

(I) $L(s, E, \rho)$ is meromorphic on C for each $\rho \in Irr^{u}(G)$.

(II) $L(s, E, \rho)$ is non-zero holomorphic in $\operatorname{Re}(s) \ge d(P)$ for each $\rho \in \operatorname{Irr}^u(G)$, except for a simple pole at s = d(P) when ρ is trivial.

(III) For each $\rho \in \operatorname{Irr}^{u}(G)$ and T > 0, let $S(T, E, \rho)$ be the number of distinct zeros and poles of $L(s, E, \rho)$ in the region $\{s \in C; 0 < \operatorname{Re}(s) \leq d(P) \text{ and } -T < \operatorname{Im}(s) < T\}$. Then there exist a positive constant cand a real valued "admissible" function C on $\operatorname{Irr}^{u}(G)$ such that the following holds:

 $S(T, E, \rho) < C(\rho)(T+1)^c$ for all $\rho \in \operatorname{Irr}^u(G)$ and T > 0.

The admissibility of C is defined as follows. We denote by $\operatorname{Rep}^{u}(G)$ the set of all equivalence classes of finite dimensional continuous unitary representations of G, which is considered to be a free abelian semigroup (with respect to the direct sum \oplus) generated by $\operatorname{Irr}^{u}(G)$, hence C is naturally considered as a function on $\operatorname{Rep}^{u}(G)$ by the additive extension. We put $C_{0}(\rho) = C(\rho)/\deg(\rho)$. We say that C is admissible if there exists a constant a > 0 such that C_{0} satisfies the following (1)-(3):

(1) $C_0(\rho_1 \otimes \rho_2) \leq C_0(\rho_1) + C_0(\rho_2) + a$ for all ρ_1 and ρ_2 in $\operatorname{Rep}^u(G)$;

(2) $C_0(\wedge^j(\rho)) \leq C_0(\rho)j \cdot \deg(\rho) + a$ for all ρ in $\operatorname{Rep}^u(G)$ and $j \geq 0$, where $\wedge^j(\rho)$ denotes the *j*-th exterior power of ρ ;

(3) $C_0(S^m(\rho)) \leq C_0(\rho)m \cdot \deg(\rho) + a$ for all ρ in $\operatorname{Rep}^u(G)$ and $m \geq 0$, where $S^m(\rho)$ denotes the *m*-th symmetric power of ρ .

(For example, deg is an admissible function with any $a \ge 1$.)

Then we have the following

Theorem 1. Let $E = (P, G, \alpha)$ be an Euler datum with $\mu(P) < d(P)$. Assume that E satisfies the condition L. Then E and \overline{E} are complete.

§2. Note on the proof. Let G be a topological group. Let H(T) be a polynomial of degree r belonging to $1+T \cdot R^{u}(G)[T]$. Then, there are continuous functions γ_{m} : Conj $(G) \rightarrow C$ such that