103. On Some Euler Products. II

By Nobushige Kurokawa
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1984)

§1. Meromorphy of Euler products. Let $E=(P, G, \alpha)$ be an Euler datum in the sense of Part I. We describe a sufficient condition making E and $\bar{E}=(P, G \times \boldsymbol{R}, \bar{\alpha})$ complete when $\mu(P)<d(P)(<\infty)$. We follow the notations of Part I (see [1]).

We say that E satisfies the condition L if E satisfies the following (I)-(III) :
(I) $L(s, E, \rho)$ is meromorphic on C for each $\rho \in \operatorname{Irr}^{u}(G)$.
(II) $L(s, E, \rho)$ is non-zero holomorphic in $\operatorname{Re}(s) \geqq d(P)$ for each $\rho \in \operatorname{Irr}^{u}(G)$, except for a simple pole at $s=d(P)$ when ρ is trivial.
(III) For each $\rho \in \operatorname{Irr}^{u}(G)$ and $T>0$, let $S(T, E, \rho)$ be the number of distinct zeros and poles of $L(s, E, \rho)$ in the region $\{s \in C ; 0<\operatorname{Re}(s)$ $\leqq d(P)$ and $-T<\operatorname{Im}(s)<T\}$. Then there exist a positive constant c and a real valued "admissible" function C on $\operatorname{Irr}^{u}(G)$ such that the following holds:
$S(T, E, \rho)<C(\rho)(T+1)^{c} \quad$ for all $\rho \in \operatorname{Irr}^{u}(G)$ and $T>0$.
The admissibility of C is defined as follows. We denote by $\operatorname{Rep}^{u}(G)$ the set of all equivalence classes of finite dimensional continuous unitary representations of G, which is considered to be a free abelian semigroup (with respect to the direct sum \oplus) generated by $\operatorname{Irr}^{u}(G)$, hence C is naturally considered as a function on $\operatorname{Rep}^{u}(G)$ by the additive extension. We put $C_{0}(\rho)=C(\rho) / \operatorname{deg}(\rho)$. We say that C is admissible if there exists a constant $a>0$ such that C_{0} satisfies the following (1)-(3):
(1) $C_{0}\left(\rho_{1} \otimes \rho_{2}\right) \leqq C_{0}\left(\rho_{1}\right)+C_{0}\left(\rho_{2}\right)+a$ for all ρ_{1} and $\rho_{2} \operatorname{in~}^{\operatorname{Rep}}{ }^{u}(G)$;
(2) $\quad C_{0}\left(\bigwedge^{j}(\rho)\right) \leqq C_{0}(\rho) j \cdot \operatorname{deg}(\rho)+a$ for all ρ in $\operatorname{Rep}^{u}(G)$ and $j \geqq 0$, where $\wedge^{j}(\rho)$ denotes the j-th exterior power of ρ;
(3) $\quad C_{0}\left(S^{m}(\rho)\right) \leqq C_{0}(\rho) m \cdot \operatorname{deg}(\rho)+a$ for all ρ in $\operatorname{Rep}^{u}(G)$ and $m \geqq 0$, where $S^{m}(\rho)$ denotes the m-th symmetric power of ρ.
(For example, deg is an admissible function with any $a \geqq 1$.)
Then we have the following
Theorem 1. Let $E=(P, G, \alpha)$ be an Euler datum with $\mu(P)<d(P)$. Assume that E satisfies the condition L. Then E and \bar{E} are complete.
§2. Note on the proof. Let G be a topological group. Let $H(T)$ be a polynomial of degree r belonging to $1+T \cdot R^{u}(G)[T]$. Then, there are continuous functions $\gamma_{m}: \operatorname{Conj}(G) \rightarrow C$ such that

