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1. Introduction and statement of the results. The purpose
this note is to establish a relation between a series which derives
rorn totally positive definite binary quadratic forms of diserirninant
/ over a totally real algebraic number field F and Dedekind’s Zeta
function of CM-field F(//). In the ease of Q, it has been done in
{6, 4].

Let F be a totally real algebraic number field of degree n, o, the
ring of integers in F, U, the unit group of , and F--PSL(o,,). We
assume the class number of F will be one in narrow sense. For any
totally negative element in o,, denote by K the totally imaginary
quadratic extention F(//) over F. Let q be the set of totally positive
definite binary quadratic forms of discriminant with o-coefficients.
We consider F operates on q) by

(x, y) (x+’y, x+y), -We define
1 (s, /)-- , , NF((,, _/))-8 (Re (s)>l).

Here, X-=-{oFo,-(O,O)}/U., Aut()--{aeF;-}. Then (s,/_/)
converges absolutely if Re (s)l, and uniformly if Re (s)l/s (e)0).
So (s, ) is a holomorphic function in that region. It has been known
from [3], [6] that (s, 3) can be continued meromorphically to the whole
plane and has a simple pole at s-1 because the first summation of (1)
is a finite sum. We denote by D the discriminant of K over F, and
by 30 a totally negative integer such that (20)--D. For a prime ideal
p, put cr=(1/2)(ord(3)-ordD) and ,-ordD. For an even prime
ideal p, let e, be the ramification index of p in F. If p ramifies in K,
we define a non-negative integer k, by

max {0k,(,/2)+1; x--/0 mod p,+, is solvable for x e o,},
otherwise, we put k,-0. We say is exceptional if

Theorem. For a non-exceptional , if c,O for all p, we have
( 2 (s, 3)-(s) /(n)Z(n)N,,(n)-sa_(/n),

:") This work was started by the author while visiting at The University of
Washington, Seattle, U.S.A.


