76. On Totally Multiplicative Signatures of Natural Numbers

By Masaki Sudo
Faculty of Engineering, Seikei University

(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1984)

1. Introduction. Let \mathbf{N} be the set of all natural numbers and σ a mapping from \mathbf{N} to the set $\{ \pm 1\}$ satisfying the condition $\sigma(a b)$ $=\sigma(a) \sigma(b)$ for all $a, b \in \mathbf{N}$. We call such a mapping σ a totally multiplicative signature. We have $\sigma\left(a^{2}\right)=1$, particularly $\sigma(1)=1$. The constant signature $\sigma(a)=1$ for all $a \in \mathbf{N}$ is called trivial. In the following, we are concerned with non-trivial totally multiplicative signatures, called simply signatures and denoted by σ. Let $\Pi(\sigma)$ be the set of all primes p, for which $\sigma(p)=-1 . \quad \sigma$ is obviously determined by $\Pi(\sigma)$. When $\Pi(\sigma)$ coincides with the set of all primes, then σ is Liouville's function λ. S. Chowla conjectured that, given any finite sequence $\varepsilon_{1}, \cdots, \varepsilon_{g}, \varepsilon_{m}= \pm 1$, then $\lambda(x+m)=\varepsilon_{m}(1 \leqslant m \leqslant g)$ will have infinitely many solutions (cf. [1], [5]). In [4], I. Schur and G. Schur proved that the followings are the only signatures for which $\sigma(x)=$ $\sigma(x+1)=\sigma(x+2)=1$ does not occur.
I. If $\sigma(3)=1$, then $\sigma(3 n+1)=1, \sigma(3 n+2)=-1, \sigma\left(3^{k} t\right)=\sigma(t)$ for all n, k, t with $(\mathrm{t}, 3)=1$.
II. If $\sigma(3)=-1, \quad$ then $\sigma(3 n+1)=1, \quad \sigma(3 n+2)=-1, \quad \sigma\left(3^{k} t\right)$ $=(-1)^{k} \sigma(t)$ for all n, k, t with $(t, 3)=1$.

Furthermore they proved that $\sigma(x)=1, \sigma(x+1)=-1, \sigma(x+2)=1$ has always a solution for any σ.

In this paper we prove the following theorem.
Theorem. Let σ be a totally multiplicative signature for which $\Pi(\sigma)$ contains at least two primes. Then
(i) $\sigma(x)=-1, \sigma(x+1)=-1$ has infinitely many solutions,
(ii) $\sigma(x)=-1, \sigma(x+1)=1, \sigma(x+2)=-1$ has a solution and if $\sigma(2)=1$, it has infinitely many solutions.

Our result contains a special case of Chowla's conjecture.
Henceforth we simply write either $(n)_{+}$or $(n)_{-}$instead of $\sigma(n)=1$ or $\sigma(n)=-1$, respectively.
2. Proof of Theorem. Let p, q be the smallest and the next smallest elements of $\Pi(\sigma)$. Then we have $1<p<q,(p, q)=1$.

Proof of (i). The congruence $q x \equiv 1(\bmod p)$ has a unique solution x_{0} in the interval $1 \leqslant x \leqslant p-1$. So there exists $r \in \mathbf{N}$ such that $q x_{0}=p r+1$. Similarly the congruence $q y \equiv-1(\bmod p)$ has a unique

