76. On Totally Multiplicative Signatures of Natural Numbers

By Masaki SUDO Faculty of Engineering, Seikei University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1984)

Introduction. Let N be the set of all natural numbers and 1. σ a mapping from N to the set $\{\pm 1\}$ satisfying the condition $\sigma(ab)$ $=\sigma(a)\sigma(b)$ for all a, $b \in \mathbb{N}$. We call such a mapping σ a totally multiplicative signature. We have $\sigma(a^2)=1$, particularly $\sigma(1)=1$. The constant signature $\sigma(a) = 1$ for all $a \in \mathbb{N}$ is called *trivial*. In the following, we are concerned with non-trivial totally multiplicative signatures, called simply signatures and denoted by σ . Let $\Pi(\sigma)$ be the set of all primes p, for which $\sigma(p) = -1$. σ is obviously determined by $\Pi(\sigma)$. When $\Pi(\sigma)$ coincides with the set of all primes, then σ is Liouville's function λ . S. Chowla conjectured that, given any finite sequence $\varepsilon_1, \dots, \varepsilon_q, \ \varepsilon_m = \pm 1$, then $\lambda(x+m) = \varepsilon_m (1 \le m \le g)$ will have infinitely many solutions (cf. [1], [5]). In [4], I. Schur and G. Schur proved that the followings are the only signatures for which $\sigma(x) =$ $\sigma(x+1) = \sigma(x+2) = 1$ does not occur.

I. If $\sigma(3)=1$, then $\sigma(3n+1)=1$, $\sigma(3n+2)=-1$, $\sigma(3^{k}t)=\sigma(t)$ for all *n*, *k*, *t* with (t, 3)=1.

II. If $\sigma(3) = -1$, then $\sigma(3n+1) = 1$, $\sigma(3n+2) = -1$, $\sigma(3^{k}t) = (-1)^{k}\sigma(t)$ for all n, k, t with (t, 3) = 1.

Furthermore they proved that $\sigma(x)=1$, $\sigma(x+1)=-1$, $\sigma(x+2)=1$ has always a solution for any σ .

In this paper we prove the following theorem.

Theorem. Let σ be a totally multiplicative signature for which $\Pi(\sigma)$ contains at least two primes. Then

(i) $\sigma(x) = -1$, $\sigma(x+1) = -1$ has infinitely many solutions,

(ii) $\sigma(x) = -1$, $\sigma(x+1) = 1$, $\sigma(x+2) = -1$ has a solution and if $\sigma(2) = 1$, it has infinitely many solutions.

Our result contains a special case of Chowla's conjecture.

Henceforth we simply write either $(n)_+$ or $(n)_-$ instead of $\sigma(n)=1$ or $\sigma(n)=-1$, respectively.

2. Proof of Theorem. Let p, q be the smallest and the next smallest elements of $\Pi(\sigma)$. Then we have 1 , <math>(p, q) = 1.

Proof of (i). The congruence $qx \equiv 1 \pmod{p}$ has a unique solution x_0 in the interval $1 \leq x \leq p-1$. So there exists $r \in \mathbb{N}$ such that $qx_0 = pr+1$. Similarly the congruence $qy \equiv -1 \pmod{p}$ has a unique