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1o Introduction. The primary purpose of this paper is to show
that Theorems 1 and 2 in our previous work [3] can be extended to a
much wider class of p-genera o capitulation than of regular ones, as
was mentioned there in Remark 3. But we shall be concerned here
thoroughly with finite nilpotent groups.

As far as transfers o a p-group G to its normal subgroups are
concerned, it was confirmed in [2] that we have

VN(g)= gE.’N. [N, N]
or every g e G and every normal subgroup N of G i G is regular.
Here VN is the transfer of G to N and [N, N] denotes the commutator
subgroup of N. In this paper, we show that this phenomenon on
transers appears in the nilpotent groups of a wider family than that
of regular groups. In fact, this new amily is closed under the opera-
tion of taking direct products though the direct product o two
regular p-groups is not necessarily regular in general (e.g. Weichsel
[4]). It is also closed under the operation of taking quotient groups.
But it should be noted that it is not closed under taking (normal)sub-
groups. We shall give a method of constructing members o the new
amily rom a special type of p-groups which do not belong to the
amily, and see that there are a lot of irregular p-groups in the family
even i p=2.

2. The property TNP of finite nilpotent groups. Let G be
finite nilpotent group.

Definition. G has the property TNP, or is a TNP-group if the
transfer o G to every normal subgroup N of G coincides with the
[G" N]-th power map modulo [N, N], or in other words, if we have

V(g)=g:N. [N, N] or Vg e G
for every normal subgroup N o G.

Proposition 1o A quotient group of a TNP-group is a TNP-group.
Proof. Let G be a TNP-group, and M be a normal subgroup

G. Put G=G/M. Then every normal subgroup N of G corresponds
to a normal subgroup N of G containing M. Then N\G and N\G are
canonically isomorphic. Therefore, by the definition of transfers,
we have the commutative diagram,


