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1. Introduction. Many results on characters of irreducible
highest weight representations o Witt algebra were obtained by
several authors (V. G. Kac [3], [4] and A. Rocha-Caridi and N. R.
Wallach [6]). In this paper we determine the remaining characters
by using the methods of [6].

The Witt algebra is an infinite dimensional complex Lie algebra
with basis (E}z which have the ollowing commutation relations"

[E, E] (]-- i)Ei i, ] e Z.
It is also known as a Lie algebra of polynomial vector fields on the
circle. Let us denote the Witt algebra by g.

A highest weight module o g is defined as ollows.
Definition. A g-module M is called the highest weight module

with highest weight 2 e C if there exists a nonzero vector v such that
(1) E.v=0 or i0
(2) Eo.v=2v
(3) M is generated by v as g-module.
If M is a highest weight module with highest weight 2, then M

is decomposed as a direct sum ot its weight spaces relative to the
action of E0"

M==0M_
where M_={u M Yo.U=(2--i)u}.

We define the ovmal character o M by
eh M= (dim M_.)e

where e" is a ormal exponential.
For any complex number 2 there exists a unique irreducible

highest weigh module L(2) wih highes weigh 2.
Our main theorem is the ollowing.
Theorem. Pu 2:--(m--1)/24 for nonnegaive integer m.
(a) For 2-2, m2 (mod 6), we have

eh L(2)= e-(e)-(1-- e<+>/).
(b) For 2--L, m4 (mod 6), we have

eh L(2)= e-(e)-(1 e<+>/).
where (e)= l-[=l(1--e) is the generating function of the classical
partition function.


