72. Fourier Coefficients of Eisenstein Series of Degree 3

By Yoshiyuki Kitaoka
Department of Mathematics, Nagoya University

(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1984)

Our aim is to give explicit formulas of Eisenstein series for $S p_{3}(Z)$ except the 2-Euler factor. In case of $S p_{2}(Z)$ they are given in [5] and essentially in [1]. It is known, [6], that they are products of local densities of quadratic forms up to elementary factors. Thus we have only to evaluate local densities.

In this note, we assume that p is an odd prime, and $m(\geqq 4)$ is even natural number. Set

$$
S=\binom{\left.1_{m / 2}\right) \quad\left(1_{m / 2}=\text { the identity matrix of degee } m / 2\right) . . . ~}{1_{m / 2}}
$$

We use the notation $\alpha_{p}(T, S)$ in [2] for local densities, and for simplicity we write $\alpha(T)$ for $\alpha_{p}(T, S)$. Denote by χ the quadratic residue symbol $\bmod p$.

Theorem. Set $d=\left(1-p^{-m / 2}\right)\left(1-p^{2-m}\right)$, and for a diagonal matrix T whose diagonal entries are $\varepsilon_{i} p^{a_{i}}(1 \leq i \leq 3)$ with $\varepsilon_{i} \in \boldsymbol{Z}_{p}^{\times},-1 \leq a_{1} \leq a_{2}$ $\leq a_{3}$, set

$$
\gamma(T)=\alpha\left(p^{2} T\right)-\left(p^{3-m / 2}+p^{5-m}\right) \alpha(p T)+p^{8-3 m / 2} \alpha(T),
$$

and $\chi(T)=1, \chi\left(-\varepsilon_{1} \varepsilon_{2}\right), \chi\left(-\varepsilon_{2} \varepsilon_{3}\right)$ or $\chi\left(-\varepsilon_{1} \varepsilon_{3}\right)$ according to $a_{1} \equiv a_{2} \equiv a_{3} \bmod 2$, $a_{1} \equiv a_{2} \not \equiv a_{3} \bmod 2, a_{1} \not \equiv a_{2} \equiv a_{3} \bmod 2$ or $a_{1} \not \equiv a_{2} \not \equiv a_{3} \bmod 2$. Then we have

$$
\gamma(T) / d=1+\chi(T) p^{(2-m / 2)\left(a_{1}+a_{2}+a_{3}+6\right)}, \quad \text { and }
$$

1) in case $a_{1} \equiv a_{2} \bmod 2$,

$$
\begin{aligned}
\alpha(T) / d= & \sum_{0 \leq k \leq a_{1}}\left(\sum_{0 \leq i \leq\left(a_{1}+a_{2}\right) / 2-k-1} p^{(5-m) i}\right) p^{(3-m / 2) k} \\
& +p^{a_{1} / 2+(5-m) a_{2} / 2}\left(\sum_{0 \leq k \leq a_{1}} p^{(2-m / 2) k}\right)\left(\sum_{0 \leq j \leq\left[\left(a_{3}-a_{2}-1\right) / 2\right]} p^{(4-m) j}\right)
\end{aligned}
$$

$$
+\chi\left(-\varepsilon_{1} \varepsilon_{2}\right) p^{a_{1} / 2+(5-m) a_{2} / 2}\left(\sum_{1 \leq k \leq a_{1}+1} p^{(2-m / 2) k}\right)\left(\sum_{0 \leq j \leq\left[\left(a_{3}-a_{2}\right) / 2-1\right]} p^{(4-m) j}\right)
$$

$$
+\chi(T) p^{\left(a_{1}+a_{2}\right) / 2+(2-m / 2) a_{3}}\left(\sum_{0 \leq k \leq a_{1}}^{1 \leq k \leq a_{1}+1} p^{(2-m / 2) k}\right)\left(\sum_{0 \leq j \leq\left(a_{2}-a_{1}\right) / 2} p^{(3-m) j}\right)
$$

$$
+\chi(T) p^{(m / 2-1) a_{1}+(2-m / 2)\left(a_{2}+a_{3}\right)+3-m} \sum_{0 \leq k \leq a_{1}-1}\left(\sum_{0 \leq j \leq k}^{0 \leq j \leq\left(a_{2}-a_{1}\right) / 2} p^{(1-m / 2) j}\right) p^{(2-m / 2) k},
$$

2) in case $a_{1} \not \equiv a_{2} \bmod 2$,

$$
\begin{aligned}
\alpha(T) / d= & \sum_{0 \leq k \leq a_{1}}\left(\sum_{\left.0 \leq j \leq a_{1+a_{2}}-1\right) / 2-k} p^{(5-m) j}\right) p^{(3-m / 2) k} \\
& +\chi(T) p^{(m / 2-1) / a_{1}+(2-m / 2)\left(a_{2}+a_{3}\right)+3-m} \sum_{0 \leq 1}\left(\sum_{0 \leq j \leq k} p^{(1-m / 2) j}\right) p^{(2-m / 2) k} \\
& +\chi(T) p^{\left(a_{1}+a_{2}\right) / 2+(2-m / 2) a_{3}+(3-m) / 2}\left(\sum_{0 \leq k \leq a_{1}}^{0} p^{(2-m / 2) k}\right)\left(\sum_{0 \leq j \leq\left(a_{2}-a_{1}-1\right) / 2} p^{(3-m) j}\right) .
\end{aligned}
$$

Corollary 1. Let $a_{k}(T)$ be the Fourier coefficient of Eisenstein series of weight $k(\equiv 0 \bmod 2)$ for $S p_{n}(Z)(n \leq 3)$. Let T be a half integral positive definite $n \times n$ matrix. Then the Dirichlet series

