[Vol. 60(A),

71. Teichmüller Spaces of Seifert Fibered Manifolds with Infinite π_1

By Ken-ichi Ohshika

Department of Mathematics, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1984)

It is known that geometric structure which 3-manifolds can possess is one of H³, E³, S³, H²× \mathbf{R} , S²× \mathbf{R} , S $\tilde{\mathbf{L}}_2$, Nil, Sol, ([9]). Teichmüller space of a geometric manifold M is the set of all metric (of the geometry) on M factored by isotopy. The topology is the quotient of C^{∞} topology. For H³, if M is a Haken 3-manifold, the Teichmüller space is trivial by Mostow's rigidity theorem. In this note we determine Teichmüller spaces of geometric 3-manifolds modelled on H²× \mathbf{R} , S $\tilde{\mathbf{L}}_2$, E³, Nil, S²× \mathbf{R} . We denote the Teichmüller space of M by $\mathcal{I}(M)$. Throughout this note M is compact and orientable.

§1. Teichmüller spaces of 2-orbifolds. As geometric manifolds modelled on $H^2 \times R$, $S\tilde{L}_2$, E^3 , Nil, $S^2 \times R$ are Seifert fibered manifolds, we consider Teichmüller spaces of base orbifolds first.

Theorem 1. Let O be a compact hyperbolic 2-orbifold (possibly nonorientable with geodesic boundaries) with k cone points and without other singularities. Then $\mathcal{T}(O) \cong \mathbf{R}^{-\mathfrak{z}_{X}(X)+2k}$ where X denotes the underlying space of O.

The theorem above appears in Thurston [8] with the sketch of the proof in the case that O is closed orientable.

Theorem 2. The Teichmüller spaces of Euclidean 2-orbifolds are as follows:

O (2-orbifold)	$\mathcal{T}(O)$
Torus, S^2 with 4 cone points	R^3
Annulus, Möbius band, Klein bottle	R^2
D^2 with 2 cone points, P^2 with 2 cone points	R^2
S^2 with 3 cone points	R

§2. Teichmüller spaces of geometric manifolds modelled on $H^2 \times R$, $S\tilde{L}_2$, E^3 , Nil.

Lemma 1 (Waldhausen [10]). Let M be a Haken Seifert fibered manifold which is neither of $S^1 \times S^1 \times I$, $S^1 \times S^1 \times S^1$, the twisted I-bundle over Klein bottle, the double of the twisted I-bundle over Klein bottle, solid torus. Then the fibration of M is unique up to isotopy.

Lemma 2 (P. Scott [7]). Let M be a Seifert fibered manifold whose base orbifold is $S^2(p, q, r)$ where $p, q \ge 4$. Let $f: M \rightarrow M$ be a homeomorphism homotopic to the identity. Then f is isotopic to the identity.