66. Continuity of the Inverse of a Certain Integral Operator

By Yoshio HAYASHI

College of Science and Technology, Nihon University (Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1984)

§1. Let $L = \bigcup L_j$ be a union of a finite number of simple, smooth and bounded open arcs in \mathbb{R}^2 , where any two of L_j have neither an interior point nor an end point in common. Denote points in \mathbb{R}^2 by x, y, etc., and the distance between x and y by |x-y|. Let $\partial L = \{x^*\}$ be the set of end points x^* of L, and set $\overline{L} = L \cup \partial L$. Suppose $C = C(\overline{L})$, $C^{\infty} = C^{\infty}(\overline{L}) = \mathcal{C}(\overline{L}), C_0^{\infty} = C_0^{\infty}(\overline{L}) = \mathcal{D}(\overline{L})$, etc., represent the function spaces on \overline{L} in the usual sense.

Assume $\psi(x, y) = (1/4i)H_0^{(2)}(k|x-y|)$, where $H_0^{(2)}$ is the zero-th order Hankel function of the second kind, and k is a constant such as Im $k \leq 0$. ψ is a fundamental solution of the Helmholtz equation.

We shall define an integral operator Ψ by

(1)
$$\Psi \tau \equiv \int_{L} \psi(x, y) \tau(y) ds_{y}$$

and denote the inverse of Ψ by Ψ^{-1} . The purpose of this work is to study about the continuity of Ψ^{-1} .

Since $\psi(x, y)$ has only a log singularity at x = y, Ψ maps C(L) into $C(\bar{L})$. Furthermore, as was proved in the previous paper [1], $\Psi \tau = 0$ is equivalent to $\tau = 0$. However, as is implied by the Riemann-Lebesgue theorem, Ψ^{-1} is not necessarily continuous. For example, for $x \neq a$, we have

$$\int_{0}^{a} \psi(x, y) \cos my \, \mathrm{d}y = \left(\frac{1}{m}\right) \psi(x, a) \sin ma - \left(\frac{1}{m}\right) \int_{0}^{a} \frac{\partial \psi(x, y)}{\partial y} \sin my \, \mathrm{d}y.$$

The right hand side exists in the sense of Cauchy's principal value of integral, which tends to zero as $m \to \infty$. However, $\cos mx$ does not tend to zero in C([0, a]). In contrast with this, we shall show that Ψ^{-1} is continuous if Ψ is considered to map $\mathcal{D} \to \mathcal{E}$.

§2. Definition 1. Set $\psi(x, y) = \psi_0(x, y) = \psi^{[0]}(x, y)$, where ψ is the one defined above, and set

$$\psi_m(x,y) = \int^{s_y} \psi_{m-1}(x,z) ds_z,$$

and

$$\psi^{[m]}(x,y) = \frac{\partial}{\partial s_x} \int^{s_y} \psi^{[m-1]}(x,z) ds_z, \qquad (m=1,2,\cdots),$$

where $\int_{a}^{s_y} \{ \} ds_z$ is the integration with respect to the arc element ds_z