65. On the Ergodicity of Solutions of Nonlinear Evolution Equations with Periodic Forcings

By Norimichi Hirano
Department of Mathematics, Faculty of Engineering,
Yokohama National University
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1984)

§ 1. Introduction and statement of the result. In this note, we consider the asymptotic behavior of the solution of the initial value problem

$$
\begin{equation*}
\frac{d u(t)}{d t}+A u(t) \ni f(t), \quad 0 \leq t<\infty, \quad u(0)=u_{0} \tag{1}
\end{equation*}
$$

where A is an m-accretive operator [2] on a real Banach space E, $u_{0} \in \overline{D(A)}$ (domain of A) and $f:[0,+\infty) \rightarrow E$ is a periodic function. The ergodicity of the solution of (1) in case that $f=0$ has been studied by several authors (cf. [1], [6]). In [5], Miyadera and Kobayashi established an ergodic theorem for the solution of (1) in case that $f \in L^{1}(0, \infty ; E)\left(L^{1}(0, \infty ; E)\right.$ denotes the space of all E-valued functions $u:[0, \infty) \rightarrow E$ such that $\left.\int_{0}^{\infty}\|u(t)\| d t<+\infty\right)$. Also, Kobayashi [4] obtained mean convergence theorems for the solution of (1). We give the following nonlinear ergodic theorem for the solution of (1) by using the nonlinear ergodic theorem due to Reich [6].

Theorem. Let E be a uniformly convex Banach space with a Fréchet differentiable norm and A be an m-accretive operator on E. Let $u_{0} \in \overline{D(A)}$ and $f \in L_{10 c}^{1}(0, \infty ; E)$ be a periodic function. Suppose that the weak solution u of (1) is bounded in E (i.e., $\sup \|u(t)\|<\infty$). Then $(1 / t) \int_{0}^{t} u(s) d s$ converges weakly to a point in E, as $t \rightarrow \infty$.
§2. Proof. Let $T>0$ be the period of f. For each $s \in[0, T]$, we define an operator $G(s): \overline{D(A)} \rightarrow \overline{D(A)}$ by $G(s) u=v_{s}(T)$, where $v_{s}:[0, T] \rightarrow E$ is the weak solution [2] of the initial value problem

$$
\begin{equation*}
\frac{d v_{s}(t)}{d t}+A v_{s}(t) \ni f(s+t), \quad 0<t \leq T, \quad v(0)=u \tag{2}
\end{equation*}
$$

Then it is easy to see that $G(s)$ is nonexpansive for each $s \in[0, T]$. In fact, from Theorem 2.1 in Chapter III of [2], we find that $\| G(s) u$ $-G(s) v\|\leq\| u-v \|$ for all $u, v \in \overline{D(A)}$ and $s \in[0, T]$. On the other hand, we have from the periodicity of the function f that $G(s)^{k} u(s)$ $=u(k T+s)$, for $s \in[0, T]$ and $k=0,1,2, \cdots$. Thus from the hypothesis, we have that for each $s \in[0, T],\left\{G(s)^{k} u(s)\right\}_{k=0}^{\infty}$ is bounded in E. Hence by using the mean ergodic theorem in [6], we obtain that for each

