61. Invariants of Reductive Lie Groups of Rank One and Their Applications

By Haruhisa NAKAJIMA
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1984)

§ 1. Introduction. Throughout this note, G will denote a reductive complex linear algebraic group. A representation of G is a finite dimensional vector space V over the complex number field \mathbb{C} together with a morphism of algebraic groups $\varphi: G \rightarrow GL(V)$. We will consider φ together with the representation space V and denote a representation as above by φ , by (φ, G) or by $\varphi(G)$. Let $\mathbb{C}[\varphi]$ be the coordinate ring of the affine space φ on which G acts naturally and let $\mathbb{C}[\varphi]^G$ be the G-subalgebra consisting of all invariant polynomials in $\mathbb{C}[\varphi]$ under this action of G. (φ, G) is said to be completely co-intersected (abbrev. COCI) if $\mathbb{C}[\varphi]^G$ (and so φ/G) is a complete intersection. Recall that (φ, G) is said to be coregular if $\mathbb{C}[\varphi]^G$ is a polynomial ring over \mathbb{C} . All coregular representations of simple algebraic groups were determined in [2, 10].

When Gx is closed in φ for an element x in φ , the isotropy group G_x is reductive, and we call the natural representation of G_x on $T_xV/T_x(G_x)$ the slice representation at x, which is denoted by φ_x . Then $\varphi_x/G_x \rightarrow \varphi/G$ is etale at the image of x in φ/G ([6]), and we easily get

Lemma (1.1). Every slice representation of a COCI representation of G is COCI.

As any representation of G is completely reducible, [11, (5.2)] implies

Lemma (1.2). Every subrepresentation of a COCI representation of G is COCI.

These lemmas are useful in studying COCI representations of reductive groups.

§ 2. Reductive groups of rank one. In this section, we suppose that rank G=1. Let T be a maximal torus of G and ν : Hom $(T, \mathbb{C}^*) \supset \mathbb{Z}$ a fixed isomorphism. For a representation ρ of G, let ρ^+ (resp. ρ^-) be the direct sum of all ρ_χ with $\nu(\chi)>0$ (resp. $\nu(\chi)<0$), where ρ_χ is the subspace of ρ of weight $\chi \in \operatorname{Hom}(T, \mathbb{C}^*)$. Moreover, put $q_T(\rho)=\min\{\dim \rho^+,\dim \rho^-\}$ and $p_T(\rho)=\min\{|\{\chi|\rho_\chi\neq 0,\nu(\chi)>0\}|,|\{\chi|\rho_\chi\neq 0,\nu(\chi)<0\}|\}$.

Theorem (2.1). Let ρ be a representation of G and suppose that (ρ, G) is COCI. Then: