7. Zeros, Eigenvalues and Arithmetic

By Akio Fujir
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. a., Jan. 12, 1984)

Let γ run over the imaginary parts of the non-trivial zeros of the Riemann zeta function $\zeta(s)$. Let $1 / 4+r^{2}$ run over the eigenvalues of the discrete spectrum of the Laplace-Beltrami operator in L^{2} (the upper half plane $/ \Gamma$), where we take $\Gamma=P S L(2, Z)$. Let α be a positive number. Here we introduce the zeta functions defined by

$$
Z_{\alpha}(s)=\sum_{\gamma>0} \frac{\sin (\alpha \gamma)}{\gamma^{s}} \quad \text { and } \quad B_{\alpha}(s)=\sum_{r>0} \frac{\sin (\alpha r)}{r^{s}}
$$

We are concerned with their analytic properties and their arithmetic.
To state our results we shall introduce some notations. $\Lambda(\cdot)$ is the von Mangoldt function. Let $\left\{P_{0}\right\}$ run over the primitive hyperbolic conjugacy classes in $\operatorname{PSL}(2, Z) . \quad N\left(P_{0}\right)$ denotes the square of the eigenvalue (>1) of a representative P_{0}. For a hyperbolic conjugacy class $\{P\}$ satisfying $P=P_{0}^{k}$ with a natural number k, we put $\tilde{\Lambda}(P)$ $=\left(\log N\left(P_{0}\right)\right) /\left(1-N(P)^{-1}\right)$, where $N(P)=N\left(P_{0}\right)^{k} . A(\Gamma)$ denotes the area of the fundamental domain of Γ, which is equal to $\pi / 3$. We assume the Riemann Hypothesis to get the results on γ or on $Z_{\alpha}(s)$. The following theorem describes a property of the distribution of γ or r.

Theorem 1. Let $T>T_{0}$ and α be a positive number. Then
i) $\sum_{0<r \leq T} e^{i \alpha \gamma}=-\frac{1}{2 \pi} \frac{\Lambda\left(e^{\alpha}\right)}{e^{\alpha / 2}} T+\frac{e^{i \alpha T}}{2 \pi i \alpha} \log T+O\left(\frac{\log T}{\log \log T}\right)$
and
ii) $\sum_{0<r \leqq T} e^{i \alpha r}=\frac{1}{\pi} \frac{\Lambda\left(e^{\alpha / 2}\right)}{e^{\alpha / 2}} T+\frac{A(\Gamma)}{2 \pi i \alpha} T e^{i \alpha T}+\frac{e^{-\alpha / 2}}{2 \pi}\left(\sum_{N(P)=e^{\alpha}} \tilde{\Lambda}(P)\right) T$

$$
+O\left(\frac{T}{\log T}\right)
$$

We remark that i) is a refinement of Landau's theorem and has been proved by the author in [3]. ii) can be proved by the same method. Venkov [11] has studied the asymptotic behavior of the sum $\sum_{r>0} \cos (\alpha r) e^{-t r^{2}}$ as $t \rightarrow+0$. We see by this theorem that for any positive α as $m \rightarrow \infty, \sum_{0<r \leqq m} \sin (\alpha \gamma) / \gamma^{s}$ converges to $Z_{\alpha}(s)$ if $\operatorname{Re} s>0$ and $\sum_{0<r \leqq m} \sin (\alpha r) / r^{s}$ converges to $\beta_{\alpha}(s)$ if $\operatorname{Re} s>1$. Using the Poisson summation formula and the Selberg trace formula, we can show the following theorem.

Theorem 2. For any positive $\alpha, Z_{\alpha}(s)$ and $ß_{\alpha}(s)$ are entire.

