7. Zeros, Eigenvalues and Arithmetic

By Akio FUJII

Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1984)

Let γ run over the imaginary parts of the non-trivial zeros of the Riemann zeta function $\zeta(s)$. Let $1/4 + r^2$ run over the eigenvalues of the discrete spectrum of the Laplace-Beltrami operator in L^2 (the upper half plane $/\Gamma$), where we take $\Gamma = PSL(2, Z)$. Let α be a positive number. Here we introduce the zeta functions defined by

$$Z_{\alpha}(s) = \sum_{r>0} \frac{\sin(lpha r)}{r^s}$$
 and $\Im_{\alpha}(s) = \sum_{r>0} \frac{\sin(lpha r)}{r^s}.$

We are concerned with their analytic properties and their arithmetic.

To state our results we shall introduce some notations. $\Lambda(\cdot)$ is the von Mangoldt function. Let $\{P_0\}$ run over the primitive hyperbolic conjugacy classes in PSL(2, Z). $N(P_0)$ denotes the square of the eigenvalue (>1) of a representative P_0 . For a hyperbolic conjugacy class $\{P\}$ satisfying $P = P_0^k$ with a natural number k, we put $\tilde{\Lambda}(P)$ $= (\log N(P_0))/(1-N(P)^{-1})$, where $N(P) = N(P_0)^k$. $A(\Gamma)$ denotes the area of the fundamental domain of Γ , which is equal to $\pi/3$. We assume the Riemann Hypothesis to get the results on Υ or on $Z_a(s)$. The following theorem describes a property of the distribution of Υ or r.

Theorem 1. Let $T > T_0$ and α be a positive number. Then

i)
$$\sum_{0 < \tau \leq T} e^{i\alpha \tau} = -\frac{1}{2\pi} \frac{\Lambda(e^{\alpha})}{e^{\alpha/2}} T + \frac{e^{i\alpha T}}{2\pi i \alpha} \log T + O\left(\frac{\log T}{\log \log T}\right)$$

and

ii)
$$\sum_{0 < r \leq T} e^{i\alpha r} = \frac{1}{\pi} \frac{\Lambda(e^{\alpha/2})}{e^{\alpha/2}} T + \frac{A(\Gamma)}{2\pi i\alpha} T e^{i\alpha T} + \frac{e^{-\alpha/2}}{2\pi} \Big(\sum_{N(P) = e^{\alpha}} \tilde{\Lambda}(P) \Big) T + O\Big(\frac{T}{\log T}\Big).$$

We remark that i) is a refinement of Landau's theorem and has been proved by the author in [3]. ii) can be proved by the same method. Venkov [11] has studied the asymptotic behavior of the sum $\sum_{r>0} \cos{(\alpha r)}e^{-tr^2}$ as $t \to +0$. We see by this theorem that for any positive α as $m \to \infty$, $\sum_{0 < r \le m} \sin{(\alpha r)}/r^s$ converges to $Z_{\alpha}(s)$ if $\operatorname{Re} s > 0$ and $\sum_{0 < r \le m} \sin{(\alpha r)}/r^s$ converges to $\Im_{\alpha}(s)$ if $\operatorname{Re} s > 1$. Using the Poisson summation formula and the Selberg trace formula, we can show the following theorem.

Theorem 2. For any positive α , $Z_{\alpha}(s)$ and $\mathfrak{Z}_{\alpha}(s)$ are entire.