48. On the Resolution of Two-dimensional Singularities

By Mutsuo OKA

Department of Mathematics, Faculty of Sciences, Tokyo Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1984)

§1. Introduction. Let $f(z_1, \dots, z_n)$ be a germ of an analytic function at the origin such that f(0)=0 and f has an isolated critical point at the origin. We assume that f has a non-degenerate Newton boundary. Let V be a germ of hypersurface $f^{-1}(0)$. Let $\Gamma^*(f)$ be the dual Newton diagram and let Σ^* be a simplicial subdivision of $\Gamma^*(f)$. It is known that there is a canonical resolution $\pi: \tilde{V} \to V$ which is associated with Σ^* . ([1]). However the process to get Σ^* from $\Gamma^*(f)$ is not unique and a "bad" Σ^* gives unnecessary exceptional divisors. The purpose of this paper is to show that in the case n=3, there is a canonical subdivision Σ^* of $\Gamma^*(f)$ so that the resolution graph is obtained by a canonical surgery from $S_2\Gamma^*(f)$ (=two-skeleton of $\Gamma^*(f)$). See Theorem (5.1).

§2. Newton boundary and the dual Newton diagram. Let $f(z_1, \dots, z_n) = \sum_{\nu} a_{\nu} z^{\nu}$ be the Taylor expansion of f where $z^{\nu} = z_1^{\nu_1} \cdots z_n^{\nu_n}$. Recall that the Newton boundary $\Gamma(f)$ is the union of the compact faces of $\Gamma_+(f)$ where $\Gamma_+(f)$ is the convex hull of the union of the subsets $\{\nu + (\mathbf{R}^+)^n\}$ for ν such that $a_{\nu} \neq 0$. For any closed face Δ of $\Gamma(f)$, we associate the polynomial $f_{\Delta}(z) = \sum_{\nu \in \Delta} a_{\nu} z^{\nu}$. We say that f is nondegenerate if f_{Δ} has no critical point in $(\mathbf{C}^*)^n$ for any $\Delta \in \Gamma(f)$ ([2]).

Let N^* be the space of positive vectors in the dual space of \mathbb{R}^n . For any vector $P = {}^t(p_1, \dots, p_n)$ of N^* , we associate the linear function $P(x) = \sum_i p_i x_i$ on $\Gamma_+(f)$ and let d(P) be the minimal value of P(x) on $\Gamma_+(f)$ and let $\Delta(P) = \{x \in \Gamma_+(f) ; P(x) = d(P)\}$. We introduce an equivalence relation \sim on N^* by $P \sim Q$ if and only if $\Delta(P) = \Delta(Q)$. For any face Δ of $\Gamma_+(f)$, let $\Delta^* = \{P \in N^* ; \Delta(P) = \Delta\}$. The collection of Δ^* gives a polyhedral decomposition of N^+ which we call the dual Newton diagram of f and we denote it by $\Gamma^*(f)$. $\Delta(P)$ is a compact face of $\Gamma(f)$ if and only if P is strictly positive. We say that a subdivision Σ^* of $\Gamma^*(f)$ is a simplicial subdivision if the following conditions are satisfied ([1]).

(i) Σ^* is a subdivision by the cones over a simplicial polyhedron whose simplexes are spanned by primitive integral vectors with determinant ± 1 in the sense of § 3.

(ii) Let $\sigma = (P_1, \dots, P_n)$ be an (n-1)-simplex. Then there exists