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1. Introduction. Let f(zl,..., Zn) be a germ of an analytic
function at the origin such that f(0)=0 and f has an isolated critical
point at the origin. We assume that f has a non-degenerate Newton
boundary. Let V be a germ of hypersurface f-l(0). Let F*(f) be
the dual Newton diagram and let X* be a simplicial subdivision of
F*(f). It is known that there is a canonical resolution u" V-V which
is associated with X*. ([1]). However the process to. get 2* from F*(f)
is not unique and a "bad" 27* gives unnecessary exceptional divisors.
The purpose of this paper is to show that in the case n=3, there is a
canonical subdivision X* of F*(f) so that the resolution graph is
obtained by a canonical surgery rorn S.F*(f) (= two-skeleton of F*(f)).
See Theorem (5.1).

2. Newton boundary and the dual Newton diagram. Let
f(zl, ..., Zn)=, az be the Taylor expansion of f where z=z1... z.
Recall that the Newton boundary F(f) is the union of the compact
aces of F/(f) where F/(f) is the convex hull o the union of the sub-
sets {,+(R/)n} or, such that ag:0. For any closed face A of F(f),
we associate the polynomial f(z)--,ez az. We say that f is non-
degenerate if f has no critical point in (C*) for any z/e F(f) ([2]).

Let N be the space o.f po.sitive vectors in the dual space of R.
For any vector P= t(pl, ., Pn) of N/, we associate the. linear unction
P(x)=,,pix, on F/(f)and let d(P) be the minimal value, of P(x) on
F/(f) and let A(P)={x e F/(f);P(x)=d(P)}. We introduce an equi-
valence relation on N by P.--Q i and only if /(P)=A(Q). For any
ace z/of F/ (f), let z/*= (P e N z](P)= z/}. The collection o z/* gives
a polyhedral decomposition o N which we call the dual Newton
diagram of f and we denote it by F*(f). A(P) is a compact face of
F(f) if and only if P is strictly positive. We say that a subdivision

* o F*(f) is a simplicial subdivision if the ollowing conditions are
satisfied ([1]).

) X* is a subdivision by the cones over a simplicial polyhedron
whose simplexes are spanned by primitive integral vectors with
determinant _+ 1 in the sense of 3.

(ii) Let a= (P1, ", Pn) be an (n-- 1)-simplex. Then there exists


