45. On the Rank of Hasse-Witt Matrix^{*}

By Tetsuo KODAMA

College of General Education, Kyushu University

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1984)

1. Let A be an algebraic function field of one variable with a perfect field K of characteristic $p \neq 0$ as the exact constant field. Let D be the K-module of differentials of A. Let G, E^* and R be the K-submodules of differentials of the first kind, of pseudo-exact differentials and of residue free differentials in D, respectively.

The following equality was proven by the author [2], and by Kunz [4] in the case where K is algebraically closed:

 $\dim_{\kappa} R/E^* = \dim_{\kappa} G/G \cap E^*.$

The author proved in [3] that this equality still holds true and the both dimensions are unchanged by any algebraic constant field extension of A over K.

Let M be the Hasse-Witt matrix (identified with the Cartier-Manin matrix) of A over K with respect to a basis of G. Then we shall show

Proposition. We have rank $(M^{(p^{1-q})} \cdots M^{(p^{-1})}M) = \dim_{\kappa} G/G \cap E^*$, where g > 0 is the genus of A and each $M^{(p^{-j})}$ is the matrix of p^{-j} -th power raised elements of M.

Corollary 1. The p-rank of the null class group of $A\overline{K}$, the constant field extension of A by the algebraic closure \overline{K} over K, is equal to $\dim_{\kappa} G/G \cap E^*$.

Corollary 2. $M^{(p^{1-q)}} \cdots M^{(p^{-1})} M = 0$ holds if and only if $G \subseteq E^*$.

Corollary 3. We have rank $(M^{(p^{1-q})} \cdots M^{(p^{-1})}M) = \dim_{\kappa} R/E^*$.

2. Let A^p be the subfield of *p*-power elements of *A*. If *x* is in $A \setminus A^p$, then $\{1, x, \dots, x^{p-1}\}$ is a basis of *A* over A^p , and any ω of *D* is representable in such form as

$$\omega = \sum_{j=0}^{p-1} a_j^p x^j dx.$$

Then the Cartier operator C is defined by $C(\omega) = a_{p-1}dx$. The following properties are well-known (see [1]);

- (1) C is independent of a choice of x.
- (2) $C(y_1^p\omega_1+y_2^p\omega_2)=y_1C(\omega_1)+y_2C(\omega_2)$ for $y_1, y_2 \in A$ and $\omega_1, \omega_2 \in D$.
- (3) $C(\omega)$ is in G if ω is in G.

Let us denote by E_n the K-submodule of ω of D with $C^n(\omega)=0$. $E_{n+1}\supseteq E_n$ for every n is evident. Let us define $E^* = \bigcup_{n=1}^{\infty} E_n$ and call the elements of E^* pseudo-exact differentials. In particular, we call the elements of E_1 exact differentials.

Dedicated to Professor Kentaro Murata on his 60th birthday.