37. On Marot Rings

By Ryûki Matsuda
Department of Mathematics, Ibaraki University
(Communicated by Shokichi Iyanaga, m. J. A., April 12, 1984)

§1. Introduction. Throughout the paper, a ring means a commutative ring with identity. A non-zerodivisor of a ring is said to be regular, and an ideal containing regular elements is said to be regular. A ring R is said to be a Marot ring (cf. [3]), if each regular ideal of R is generated by regular elements. The main purpose of this paper is to solve the following question on Marot rings posed by Portelli-Spangher [6]. : Let a be an ideal of a ring R. We denote the set of regular elements contained in \mathfrak{a} by $\operatorname{Reg}(\mathfrak{a})$. We say that a ring R has property $(F U)$, if $\operatorname{Reg}(\mathfrak{a}) \subset \bigcup_{i=1}^{n} \mathfrak{a}_{i}$ implies $\mathfrak{a} \subset \bigcup_{i=1}^{n} \mathfrak{a}_{i}$ for each family of a finite number of regular ideals $\mathfrak{a}, \mathfrak{a}_{1}, \mathfrak{a}_{2}, \cdots, \mathfrak{a}_{n}$. If R has property ($F U$), then R is a Marot ring. The question is: Does a Marot ring have property (FU)?
§2. Answer to the question. Let us begin by some lemmas.
Lemma 1. Let R be a ring.
(1) R is a Marot ring if and only if an ideal (r, s) is generated by regular elements for each regular element r of R and for each element $s \in R$.
(2) R has property $(F U)$ if and only if $\operatorname{Reg}((r, s)) \subset \bigcup_{i=1}^{n} \alpha_{i}$ implies $(r, s) \subset \bigcup_{i=1}^{n} \mathfrak{a}_{i}$ for each pair of elements r, s of R with r regular and for each family of a finite number of regular ideals $\mathfrak{a}_{1}, \mathfrak{a}_{2}, \cdots, \mathfrak{a}_{n}$.

Let A be a ring, and let M be an A-module. We construct a semidirect product R by the principle of idealization ([5, Chap. 1, $\left.\mathrm{n}^{\circ} 1\right]$). That is, $R=A \oplus M$ and for elements $f+x$ and $g+y$ of R we set $(f+x)$ $(g+y)=f g+(f y+g x)$, where $f, g \in A$ and $x, y \in M$.

Lemma 2. Let $f+x$ be an element of R. Then $f+x$ is a regular element of R if and only if f is a regular element of R.

Let p be a prime number, and let k be a finite field of characteristic p. We denote by A the subring $k\left[X^{p}, X^{p+1}, X^{p+2}, \cdots\right]$ of the polynomial ring $k[X]$. Let $\left\{F_{0}, F_{1}, \cdots, F_{n}, G_{1}, G_{2}, \cdots\right\}$ be a set of irreducible polynomials of $k[X]$ such that (1) $F_{0}=X$ and $F_{1}=1+X$, (2) $\operatorname{deg}\left(F_{i}\right)<2 p$ for each i, (3) $\operatorname{deg}\left(G_{j}\right) \geq 2 p$ for each j, (4) any two elements of the set are not associated and (5) each irreducible polynomial of $k[X]$ is associated with some element of the set. We denote $k[X] /\left(G_{j}\right)$ by K_{j}. $\quad K_{j}$ is naturally an A-module. We construct a direct sum M of A-modules $K_{1}, K_{2}, K_{3}, \cdots$, and construct a semidirect product $R=A$

