37. On Marot Rings

By Ryûki MATSUDA

Department of Mathematics, Ibaraki University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1984)

§1. Introduction. Throughout the paper, a ring means a commutative ring with identity. A non-zerodivisor of a ring is said to be regular, and an ideal containing regular elements is said to be regular. A ring R is said to be a *Marot ring* (cf. [3]), if each regular ideal of R is generated by regular elements. The main purpose of this paper is to solve the following question on Marot rings posed by Portelli-Spangher [6]. : Let α be an ideal of a ring R. We denote the set of regular elements contained in α by Reg (α). We say that a ring R has property (FU), if Reg (α) $\subset \bigcup_{i=1}^{n} \alpha_i$ implies $\alpha \subset \bigcup_{i=1}^{n} \alpha_i$ for each family of a finite number of regular ideals $\alpha, \alpha_1, \alpha_2, \dots, \alpha_n$. If R has property (FU), then R is a Marot ring. The question is: Does a Marot ring have property (FU)?

§2. Answer to the question. Let us begin by some lemmas.

Lemma 1. Let R be a ring.

(1) *R* is a Marot ring if and only if an ideal (r, s) is generated by regular elements for each regular element *r* of *R* and for each element $s \in R$.

(2) R has property (FU) if and only if Reg $((r, s)) \subset \bigcup_{i=1}^{n} \alpha_i$ implies $(r, s) \subset \bigcup_{i=1}^{n} \alpha_i$ for each pair of elements r, s of R with r regular and for each family of a finite number of regular ideals $\alpha_1, \alpha_2, \dots, \alpha_n$.

Let A be a ring, and let M be an A-module. We construct a semidirect product R by the principle of idealization ([5, Chap. 1, n°1]). That is, $R = A \oplus M$ and for elements f + x and g + y of R we set (f + x) (g+y) = fg + (fy+gx), where $f, g \in A$ and $x, y \in M$.

Lemma 2. Let f+x be an element of R. Then f+x is a regular element of R if and only if f is a regular element of R.

Let p be a prime number, and let k be a finite field of characteristic p. We denote by A the subring $k[X^p, X^{p+1}, X^{p+2}, \cdots]$ of the polynomial ring k[X]. Let $\{F_0, F_1, \cdots, F_n, G_1, G_2, \cdots\}$ be a set of irreducible polynomials of k[X] such that (1) $F_0 = X$ and $F_1 = 1 + X$, (2) deg $(F_i) < 2p$ for each i, (3) deg $(G_j) \ge 2p$ for each j, (4) any two elements of the set are not associated and (5) each irreducible polynomial of k[X] is associated with some element of the set. We denote $k[X]/(G_j)$ by K_j . K_j is naturally an A-module. We construct a direct sum Mof A-modules K_1, K_2, K_3, \cdots , and construct a semidirect product R = A