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1. Summary. The Toda equation with two time variables

(1.1) XY log t=t/,t_/t (X- 3x 3y
can be solved using slutions of the confluent Euler-Poisson-Darboux
equation
(1.2) (XY+xX/--n)u O.
Rational solutions, confluent hypergeometric slutions and solutions
which can be expressed by hypergeometric functions with two varia-
bles are obtained.

2. B/icklund transformation of a separated solution. As is
shown in our previous work ([1])
(2.1) tn=F(n) exp ((-- n)xy)
where F(n+l)F(n--1)/F(ny=a--n, F(0)=F(1)=I, satisfies the Toda
equation (1.1).
(2.2) r XY log t o n,
satisfies
(2.3)
Put
(2.4)

Define
(2.5)

Sn= Y log

Yrn--rn(Sn-Sn+), X8n--rn_l--rn.

Mn=XY+s+IX+rn=XY+ xX+a--n,
Xn= -r;X=(n--a)-X, Yn=Y+sn+=Y+x.

T={u=Un(; x, y) Mouo=O, Un+--YUn (nO),
u_=Xu (n<0)}

then we have
Theorem 2.1 (Biicklund transformation). If U e T then we have

Mu=0, u+=Yu, Un_=XUn (n=0, +_l, +_2,...) and r=Untn sat-
isfies the Toda equation (1.1).

3. One.parameter groups on T. We can obtain three linearly
independent first order partial differential operators which commute
with M0 (modulo M0).

Theorem 3.1. f(--X+y, Y and Z--yY-xX commute with Mo.
We can construct three one-parameter groups of linear transfor-

mations and a finite group which keep T invariant.


