127. On Powers of the Denominators of Rationals

By Chiaki Nagasaka
Department of Mathematics, Kyushu University
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1983)

For a rational x let den x mean its reduced denominator >0. We denote by den ${ }^{\alpha} x$ the α th power of den x, where α is a complex number. In this note we show some properties of the function den ${ }^{\alpha} x$.

Theorem 1. Let a, b, c, d be rational integers with $a d-b c=1$. Then for any rational x with $c x+d \neq 0$, we have

$$
\begin{equation*}
\operatorname{den}^{\alpha} \frac{a x+b}{c x+d}=|c x+d|^{\alpha} \operatorname{den}^{\alpha} x \tag{1}
\end{equation*}
$$

Conversely, if a function $f(x)$ defined on the rationals satisfies the functional equations

$$
\begin{equation*}
f(x+1)=f(x) \tag{*}
\end{equation*}
$$

$$
\begin{equation*}
f\left(-\frac{1}{x}\right)=|x|^{\alpha} f(x) \quad(x \neq 0) \tag{**}
\end{equation*}
$$

then

$$
f(x)=f(0) \operatorname{den}^{\alpha} x .
$$

Theorem 2. For every positive integer n, we have

$$
\begin{equation*}
n^{\alpha-1} \sum_{\substack{a d=n \\ d>0}} \sum_{b=0}^{d-1} d^{-\alpha} \operatorname{den}^{\alpha} \frac{a x+b}{d}=\frac{1}{n} \sigma_{\alpha+1}(n) \operatorname{den}^{\alpha} x, \tag{2}
\end{equation*}
$$

where $\sigma_{\alpha+1}(n)$ is the sum of the $(\alpha+1)$ th powers of positive divisors of n.
Theorem 3. For every positive integer n, we have

$$
\begin{equation*}
\sum_{b=0}^{n-1} \operatorname{den}^{\alpha} \frac{x+b}{n}=\sum_{d \mid n} \mu(d) d^{\alpha} \sigma_{\alpha+1}\left(\frac{n}{d}\right) \operatorname{den}^{\alpha} d x \tag{3}
\end{equation*}
$$

where μ means Möbius' function.
Proof of Theorem 1. The transformation property (1) is easily verified. We prove the second assertion by induction on den x. Write x in the form h / k where h and k are relatively prime integers and $k>0$. When den $x=k=1$, namely x is a rational integer, we see immediately by the equation (*)

$$
f(x)=f(0)=f(0) \operatorname{den}^{\alpha} x .
$$

When den $x=k>1$, we assume that our assertion is valid for any rational with the reduced denominator less than k. We may consider $0<x<1$ because of (*). Then, using the equation (**), we find

$$
\begin{aligned}
f(x) & =f\left(\frac{h}{k}\right)=f\left(-\frac{1}{-k / h}\right)=\left|-\frac{k}{h}\right|^{\alpha} f\left(-\frac{k}{h}\right) \\
& =\left(\frac{k}{h}\right)^{\alpha} h^{\alpha} f(0)=k^{\alpha} f(0)=f(0) \operatorname{den}^{\alpha} x
\end{aligned}
$$

