118. On Rational Similarity Solutions of $K d V$ and m-KdV Equations

By Yoshinori Kametaka
Department of Applied Mathematics, Faculty of Engineering, Ehime University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1983)

§1. Summary. The Korteweg-de Vries (KdV) equation

$$
\begin{equation*}
u_{t}-12 u u_{x}+u_{x x x}=0 \tag{1.1}
\end{equation*}
$$

and the modified Korteweg-de Vries ($m-\mathrm{KdV}$) equation

$$
\begin{equation*}
v_{t}-6 v^{2} v_{x}+v_{x x x}=0 \tag{1.2}
\end{equation*}
$$

have a series of rational similarity solutions

$$
\begin{gather*}
u_{n}(x, t)=g(n+1) x^{-2}-\left(\frac{\partial}{\partial x}\right)^{2} \log F_{n+1}(x, t), \tag{1.3}\\
v_{n}(x, t)=(g(n)-g(n+1)) x^{-1}+\frac{\partial}{\partial x} \log \left(F_{n}(x, t) / F_{n+1}(x, t)\right)
\end{gather*}
$$

where

$$
\begin{equation*}
\boldsymbol{F}_{n}(x, t)=\sum_{j=0}^{f(n)} \boldsymbol{P}_{n, j}(3 t)^{j} x^{3(f(n)-j)} \tag{1.5}
\end{equation*}
$$

is a homogeneous polynomial of x^{3} and t of degree $f(n)=[n(n-1) / 6]$ with integral coefficients $P_{n, j}\left(P_{n, 0}=1, P_{n, f(n)} \neq 0\right), \quad g(n)=1$ if $n \equiv 2$ $(\bmod 3),=0$ otherwise. These polynomials are essentially the same as those of A. I. Yablonskii [1] and A. P. Vorobiev [2]. Actually the polynomials

$$
\begin{equation*}
P_{n}(\xi)=\sum_{j=0}^{f(n)} P_{n, j} \xi^{d(n)-3 j}, \quad(d(n)=n(n-1) / 2) \tag{1.6}
\end{equation*}
$$

were introduced by them to describe the rational solutions of PainlevéII equation.

$$
\begin{equation*}
q_{n}=\left(\log P_{n}(\xi) / P_{n+1}(\xi)\right)^{\prime} \tag{1.7}
\end{equation*}
$$

satisfies Painlevé-II equation

$$
\begin{equation*}
q_{n}^{\prime \prime}=2 q_{n}^{3}+\xi q_{n}+n . \tag{1.8}
\end{equation*}
$$

It gives also a rational solution of the Toda equation. If p_{n} is given by

$$
\begin{equation*}
p_{n}=-P_{n} P_{n+2} / 4 P_{n+1}^{2}=\left(\log P_{n+1}(\xi)\right)^{\prime \prime}-\xi / 4 \tag{1.9}
\end{equation*}
$$

then $\left\{q_{n}, p_{n}\right\}$ satisfies the Toda equation

$$
\begin{equation*}
q_{n}^{\prime}=p_{n-1}-p_{n}, \quad p_{n}^{\prime}=p_{n}\left(q_{n}-q_{n+1}\right) \tag{1.10}
\end{equation*}
$$

Vorobiev calculated the coefficients of $P_{n}(n \leq 8)$ and showed that $P_{n, j}$ are very large integers for large n and j. Here we give a theoretical bound for them.

$$
\begin{equation*}
\left|P_{n, j}\right| \leq(7 n)^{4 j}, \quad n=1,2,3, \cdots, \quad 0 \leq j \leq f(n) \tag{1.11}
\end{equation*}
$$

