115. The Gauss Map in Models

By Hiroo Matsuda
Department of Mathematics, Kanazawa Medical University

(Communicated by Kunihiko Kodarra, M. J. A., Oct. 12, 1983)

1. Introduction. Let N be an n-dimensional Riemannian manifold isometrically immersed into a Euclidean $(n+k)$-space $E^{n+k}(k \geqq 1)$ and $V_{E}(N)$ be the unit normal bundle of N in E^{n+k}. Then the Gauss map of $\mathcal{V}_{E}(N)$ into the unit sphere about the origin of E^{n+k} was given by Chern and Lashof [1]. J. L. Weiner [5] gave a generalization of this map as follows: Let N be an isometrically immersed n-dimensional Riemannian manifold into a complete $(n+k)$-dimensional Riemannian manifold. Suppose that for a point p of N, N does not intersect the cut locus of p. The parallel displacement of $v \in \mathcal{V}_{M}(N)$ (= the unit normal bundle of N in M) along the shortest geodesic segment joining the foot point of v to p gives a mapping of $\mathcal{V}_{M}(N)$ into the unit sphere in the tangent space of M at p. This map is called the Gauss map on N based at p. R. Takagi [4] described an n-dimensional complete Riemannian N isometrically immersed into a Euclidean ($n+1$)-sphere S^{n+1} when the Gauss map on N based at a point S^{n+1} has constant rank. Furthermore, J. L. Weiner [5] showed similar results when the ambient space is a hyperbolic space of curvature -1 and also reproved Takagi's theorem in a simpler fashion. When the ambient space M is a model with a pole o, the cut locus of o is empty. So, for any isometrically immersed Riemannian manifold N into M, the Gauss map G_{M} on N based at o can be defined. In this note, we will study the Gauss map G_{M} and show the similar results to those of J. L. Weiner.
2. Preliminaries. Let (M, o) be an n-dimensional model with a pole $o(n \geqq 2)$ and $h:=\operatorname{Exp}_{o}: M_{o} \rightarrow M$ be the exponential map from the tangent space M_{o} at o of M onto M. Choosing an orthonormal basis $\left\{e_{1}, \cdots, e_{n}\right\}$ on M_{o}, let $\left\{y^{1}, \cdots, y^{n}\right\}$ be the normal coordinate system relative to this basis. Let g be the Riemannian metric on M. Then $h^{*} g$ is a Riemannian metric on M_{o} and written by

$$
h^{*} g=d r^{2}+f(r)^{2} d \Theta^{2} .
$$

Here $d \Theta^{2}$ denotes the canonical metric on the unit sphere of M_{o}, r is the usual radial function on M_{o} and $f(r)$ is the C^{∞} function on $[0, \infty)$ satisfying

$$
f(0)=0, f^{\prime}(0)=1, f(r)>0 \quad \text { for } r>0
$$

3. Parallel displacements. For a tangent vector
