98. The Structure of Serial Rings and Self-Duality

By Takashi Mano
Department of Mathematics, Sophia University

(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1983)

The notion of serial rings was introduced by T. Nakayama [6]. A left and right Artinian ring R is called serial if $R e$ as well as $e R$ has a unique composition series for any primitive idempotent $e \in R$. The structure of serial rings has been studied by many authors (cf. [1], [3]). The purpose of this note is to give a method for the construction of serial rings in general, and we shall give a necessary and sufficient condition for given two serial rings to be Morita equivalent to each other. Moreover, as one of its applications, we shall prove that a serial ring satisfying a mild condition has a self-duality. Proofs and details will be published elsewhere.

1. Let $b_{1}, b_{2}, \cdots, b_{n}$ be a sequence of positive integers such that $b_{i} \geqq 2$ for $i=2,3, \cdots, n$ and $b_{[i+1]} \leqq b_{i}+1$ for $i=1,2, \cdots, n$, where [k] denotes the least positive remainder of k modulo n. For each i, let us put $c_{i}=(1 / n)\left\{b_{i}-\left[b_{i}\right]\right\}+1$ and $d_{i}=(1 / n)\left\{b_{[i+1]}-1-\left[b_{[i+1]}-1\right]\right\}+1$. Let $R_{1}, R_{2}, \cdots, R_{n}$ be local uniserial rings such that $c\left(R_{R_{i}} R_{i}\right)=c_{i}$ and $R_{i} /\left(J_{i}\right)^{d_{i}} \cong R_{[i+1]} /\left(J_{[i+1]}\right)^{d_{i}}$ for all i, where $J_{i}=\operatorname{Rad}\left(R_{i}\right)$ and $c(M)$ denotes the composition length of a module M. Let $\varphi_{i}: R_{i} \rightarrow R_{[i+1]}$ be a function and $w_{i} \in R_{i}, i=1,2, \cdots, n$. Then the system $\mathbb{S}=\left\{n ; b_{i}, R_{i}, w_{i}, \varphi_{i}\right\}$ is called a serial system if the following four conditions are satisfied: For each i,
(i) $J_{i}=R_{i} w_{i}=w_{i} R_{i}$,
(ii) $\pi_{[t+1]} \circ \varphi_{i}$ is an onto ring homomorphism where $\pi_{[i+1]}: R_{[i+1]}$ $\rightarrow R_{[i+1]} /\left(J_{[i+1]}\right)^{d_{i}}$ denotes the canonical ring homomorphism,
(iii) $\varphi_{i}\left(w_{i}\right) \equiv w_{[i+1]}\left(\bmod \left(J_{[i+1]}\right)^{d_{i}}\right)$,
(iv) $r_{i} w_{i}=w_{i} \varphi_{[i-1]} \circ \varphi_{[i-2]} \circ \cdots \circ \varphi_{i}\left(r_{i}\right)$ for all $r_{i} \in R_{i}$.

Let R be an indecomposable self-basic serial ring with the radical J. Then we can construct a serial system \mathfrak{S}_{R} associated to R, which will be called an invariant system of R, as follows: Let $R e_{1}, R e_{2}, \cdots$, $R e_{n}$ be a Kupisch series for R, i.e., $1_{R}=e_{1}+e_{2}+\cdots+e_{n}$ is a decomposition of 1_{R} into a sum of mutually orthogonal primitive idempotents such that $c\left({ }_{R} R e_{i}\right) \geqq 2$ for $i=2,3, \cdots, n, J e_{i} / J^{2} e_{i} \cong R e_{i-1} / J e_{i-1}$ for $i=2$, $3, \cdots, n$, and $J e_{1} / J^{2} e_{1} \cong R e_{n} / J e_{n}$ if $J e_{1} \neq 0$. Let us put $b_{i}=c\left({ }_{R} R e_{i}\right)$ and $R_{i}=e_{i} R e_{i}, i=1,2, \cdots, n$. For each i, let y_{i} be an element in $e_{i} J e_{[i+1]}$ such that $e_{i} J e_{[i+1]}=R_{i} y_{i}=y_{i} R_{[i+1]}$, and define a function $\varphi_{i}: R_{i} \rightarrow R_{[i+1]}$

