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98. The Structure of Serial Rings and Self.Duality
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(Communicate.d by Shokichi IYANAGA, M. J. A., Sept. 12, 1983)

The notion of serial rings wa,s introduced by T. Nakayama [6].
A left and right Artinian ring R is called serial if Re as well as eR
ha.s a unique composition series for any primitive idempotent e e R.
The structure of serial rings has been studied by many authors (cf.
[1], [3]). The purpose of this note is to give a method for the con-
struction of serial rings in general, and we shall give a necessary and
sufficient condition for given two serial rings to. be Morita equivalent
to each other. Moreover, as one of its applications, we shall prove that
a serial ring satisfying a mild condition has a self-duality. Proofs
a.nd details will be published elsewhere.

1o Let b, b, ..., b be a sequence of positive integers such that
b_2 for i=2, 3, ..., n and b_+._b+l for i-1, 2, ..., n, where [k]
denotes the least positive remainder of k modulo n. For each i, let
us put c--(1/n){b-[b]}+l and d--(1/n){b+--l--[b+--l]}+l.
Let R, R., ..., R be local uniserial rings such that c(,R)-c a.nd
R/(J),-R+/(J_+)’ for all i, Where J=Rad (R) and c(M) denotes
the composition length of a module M. Let : Rt-+R+ be a function
and weR, i-1,2, ..., n. Then the system ---[n; b,R,w,) is
called a serial system if the following four conditions are satisfied:
For each i,

( i ) J=Rw=wR,
(ii) /q is an onto ring homomorphism where z/" R/:

R+/(J+)’ denotes the ca.nonical ring homomorphism,

(iii) (w)----w+ (mod (J+q)’),
(iv) r,w,-w,,_or,_o o,(r,) for all r, e R,.
Let R be an indecomposable self-basic serial ring with the radical

J. Then we can construct a serial system associated to R, which
will be called an invariant system of R, as follows: Let Re, Re, ...,
Re be a Kupisch series for R, i.e., l-e+e+.., q-e is a decompo-
sition of 1 into a sum of mutually orthogonal primitive idempotents
such that c(Re)>_2 for i=2, 3, ..., n, Je/Je-Re_/Je_ for i=2,
3, ..., n, and Je,/Je-Ren/Je if Je:/=O. Let us put b,=c(Re,) and
R,=e,Re,, i=’1, 2, ..., n. For each i, let y, be an element in eJe,+
such that eJe,+=R,y=y,R+q, and define a function 9: R,R,+


