90. A Shape of Eigenfunction of the Laplacian under Singular Variation of Domains

By Shin OZAWA

Department of Mathematics, University of Tokyo (Communicated by Kôsaku YOSIDA, M. J. A., Sept. 12, 1983)

Recently the author has studied a sharp asymptotic behaviour of eigenvalues of the Laplacian under singular variation of domains. See Ozawa [3]-[6]. See Matsuzawa-Tanno [1], Mazja-Nazarov-Plamenevskii [2], for other related topics. In this note we will give a new formula for eigenfunctions of the Laplacian concerning singular variation of domains.

Let Ω be a bounded domain in \mathbb{R}^3 with smooth boundary $\partial \Omega = \hat{\tau}$. Let w be a fixed point in Ω . Let B_{ϵ} be the ball defined by $B_{\epsilon} = \{z \in \Omega; |z-w| < \epsilon\}$ and let $\Omega_{\epsilon} = \Omega \setminus \overline{B}_{\epsilon}$. Then, the boundary of Ω_{ϵ} consists of $\tilde{\tau}$ and ∂B_{ϵ} . Let $0 < \mu_1(\varepsilon) \le \mu_2(\varepsilon) \le \cdots$ be the eigenvalues of the Laplacian in Ω_{ϵ} under the Dirichlet condition on $\tilde{\tau} \cup \partial B_{\epsilon}$. Let $0 < \mu_1 \le \mu_2 \le \cdots$ be the eigenvalues of the Laplacian in Ω under the Dirichlet condition on $\tilde{\tau} \cup \partial B_{\epsilon}$. Let $0 < \mu_1 \le \mu_2 \le \cdots$ be the eigenvalues of the Laplacian in Ω under the Dirichlet condition on $\tilde{\tau}$. We arrange them repeatedly according to their multiplicities. Let $\{\varphi_j(\varepsilon)\}_{j=1}^{\infty}$ (resp. $\{\varphi_j\}_{j=1}^{\infty}$) be a complete set of orthonormal basis of $L^2(\Omega_{\epsilon})$ (resp. $L^2(\Omega)$) satisfying $-\Delta(\varphi_j(\varepsilon))(x) = \mu_j(\varepsilon)(\varphi_j(\varepsilon))(x), x \in \Omega_{\epsilon}, (\varphi_j(\varepsilon))(x) = 0$ on $\partial \Omega_{\epsilon}$ (resp. $-\Delta \varphi_j(x) = \mu_j \varphi_j(x), x \in \Omega, \varphi_j(x) = 0$ on $\tilde{\tau}$).

We have the following:

Theorem 1. Fix j. Suppose that μ_j is a simple eigenvalue. Then, the asymptotic relation

(1) $\partial(\varphi_j(\varepsilon))(z)/\partial\nu_z^{\varepsilon}|_{z\in\partial B_s} = -\varphi_j(w)\varepsilon^{-1} + O(\varepsilon^{-1/3})$

as ε tends to zero. Here $\partial/\partial v_z^*$ denotes the derivative along the exterior normal direction with respect to Ω_{\bullet} .

Remark. Theorem 1 was conjectured in Ozawa [7].

From now on we give a short sketch of our proof of Theorem. We need some lemmas.

Let F be a set in \mathbb{R}^n . We put

$$|u|_{0,F} = \sup_{x \in F} |u(x)|$$

$$|u|_{\theta,F} = \sup_{x,y \in F} |u(x) - u(y)| / |x - y|^{\theta} \qquad (0 < \theta < 1)$$

$$|u|_{1,F} = \sum_{i=1}^{n} \sup_{x \in F} |\partial_{x_{i}}u(x)|$$

$$|u|_{2,F} = \sum_{i,j=1}^{n} \sup_{x \in F} |\partial_{x_{i}}\partial_{x_{j}}u(x)|$$

and