69. On the Asymptotic Behavior of a Nonlinear Contraction Semigroup and the Resolvent Iteration

By Tetsuji Sugimoto and Munehito Koizumi
Department of Mathematics, Waseda University
(Communicated by Kôsaku Yosida, m. J. A., June 14, 1983)

1. Introduction. Throughout this note X denotes a real Banach space, A is an m-dissipative operator in X and $\{T(t): t \geqq 0\}$ is the contraction semigroup on $\overline{D(A)}$ (the closure of the domain of A) generated by A. For $r>0, J_{r}$ denotes the resolvent of A, i.e., $J_{r}=(I-r A)^{-1}$.

Consider the resolvent iteration

$$
\left\{\begin{array}{l}
x_{0} \in X \tag{RI}\\
x_{n}=J_{r_{n}} x_{n-1}
\end{array} \quad \text { for } n \geqq 1\right.
$$

where $\left\{r_{n}\right\}$ is a sequence of positive numbers. The purpose of this note is to prove the following

Theorem. $T(t) x$ is strongly (resp. weakly) convergent as $t \rightarrow \infty$ for all $x \in \overline{D(A)}$ if and only if (RI) is strongly (resp. weakly) convergent as $n \rightarrow \infty$ for all $x_{0} \in X$ and all $\left\{r_{n}\right\} \in l^{2} \backslash l^{1}$.

This theorem has been proved by Passty [1, Theorem 2] under an additional assumption that A is Lipschitzian. We can, however, remove the assumption on A by using the idea of [3].
2. Proof of Theorem. By a contractive evolution system on $C(\subset X)$ we mean a two-parameter family $\{U(t, s): 0 \leqq s \leqq t<\infty\}$ of selfmaps of C satisfying: (i) $U(t, t) z=z$ for $t \in R^{+}=[0, \infty)$ and $z \in C$; (ii) $U(t, s) U(s, r) z=U(t, r) z$ for $t \geqq s \geqq r$ in R^{+}and $z \in C$; (iii) $\| U(t, s) z_{1}$ $-U(t, s) z_{2}\|\leqq\| z_{1}-z_{2} \|$ for $t \geqq s$ in R^{+}and $z_{1}, z_{2} \in C$.

Definition ([1]). A contractive evolution system $\{U(t, s): 0 \leqq s \leqq t$ $<\infty\}$ on $\overline{D(A)}$ is said to be asymptotically equal to the semigroup $\{T(t): t \geqq 0\}$ if for each $x \in \overline{D(A)}$,
(2.1) $\lim _{t \rightarrow \infty}\|U(t+h, s) x-T(h) U(t, s) x\|=0$ for each $s \geqq 0$, uniformly in $h \geqq 0$ and
(2.2) $\lim _{t \rightarrow \infty}\|U(t+h, t) T(t) x-T(t+h) x\|=0$ uniformly in $h \geqq 0$.

The following proposition is due to Passty [1].
Proposition 2.1. Let $\{U(t, s): 0 \leqq s \leqq t<\infty\}$ be a contractive evolution system which is asymptotically equal to the semigroup $\{T(t)$: $t \geqq 0\}$. Then $T(t) x$ is strongly (resp. weakly) convergent as $t \rightarrow \infty$ for all $x \in \overline{D(A)}$ if and only if $U(t, s) x$ is strongly (resp. weakly) convergent as $t \rightarrow \infty$ for all $x \in \overline{D(A)}$ and all $s \geqq 0$.

