# 53. A Generalization of the Fenchel-Moreau Theorem 

By Shozo Koshi and Naoto Komuro<br>Department of Mathematics, Hokkaido University<br>(Communicated by Kôsaku Yosida, M. J. A., May 12, 1983)

1. Let $F$ be a real valued convex function defined on a locally convex space. The Fenchel-Moreau theorem is that $F(x)=F^{* *}(x)$ if and only if $F$ is lower semi-continuous at $x$ ([1]). Many authors considered to generalize this theorem when $F$ is a convex operator defined on a topological linear spaces to Riesz spaces. For example, J. Zowe has proved $F(x)=F^{* *}(x)$ if $F$ is continuous at $x$ and $x$ is an interior point of the domain of $F$. We shall consider the theorem in the case where $F$ is not necessary continuous, nor the interior of the domain is non-empty. In the following, let $X$ and $Y$ be two Hausdorff locally convex topological vector spaces and $Y$ is assumed further a Dedekind complete Riesz space (order complete vector lattice).

To relate the order structure and the topological structure, we demand furthermore that the linear topology of $Y$ is normal i.e. the family of the following sets

$$
\left(V+Y^{+}\right) \cap\left(V-Y^{+}\right) ; V \text { is an open set containing } 0,
$$

constitutes a base of neighbourhoods of 0 for $Y$, where $Y^{+}$denotes the totality of elements of $Y$ equal to or greater than 0 . A convex operator $F$ defined on $X$ into $Y$ is to mean that the domain of $F$ (denoted by $D(F)$ ) is a non-empty convex subset of $X$ and

$$
F\left(\alpha x_{1}+\beta x_{2}\right) \leqq \alpha F\left(x_{1}\right)+\beta F\left(x_{2}\right)
$$

for $\alpha+\beta=1(\alpha, \beta \in[0,1])$ and $x_{1}, x_{2} \in D(F)$.
We shall define the conjugate function $F^{*}$ of $F$. Let $L(X, Y)$ be the totality of all continuous linear operator from $X$ to $Y$. For $A \in L(X, Y)$, we define $F^{*}$ as follows:

$$
F^{*}(A)=\sup \{A(x)-F(x) ; x \in D(F)\} .
$$

It is easy to see that $F^{*}$ is a convex operator from $L(X, Y)$ to $Y$. Similarly, considering $X \subset L(L(X, Y), Y)$, we can define the double conjugate of $F$ :

$$
F^{* *}(x)=\sup \left\{A(x)-F^{*}(A) ; A \in L(X, Y)\right\}
$$

As usual, we define the subdifferential of $F$ at $x \in D(F)$ with

$$
\partial F(x)=\left\{A \in L(X, Y) ; A(x)-A\left(x^{\prime}\right) \geq F(x)-F\left(x^{\prime}\right), x^{\prime} \in D(F)\right\} .
$$

Furthermore, we shall define the $y$-subdifferential for $y \in Y^{+}$as follows:
$\partial_{y} F(x)=\left\{A \in L(X, Y) ; A(x)-A\left(x^{\prime}\right) \geq F(x)-F\left(x^{\prime}\right)-y, x^{\prime} \in D(F)\right\}$.
It is easy to see that
(a) $\partial F(x) \neq \phi$ implies $\partial_{v} F(x) \neq \phi$,

