35. Singular Cauchy Problems for Second Order Partial Differential Operators with Non-Involutory Characteristics

By Keisuke UCHIKOSHI

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1983)

We denote by (x, y) the variables of C^{n+1} , where $x \in C$ and $y = (y_1, y') \in C \times C^{n-1}$, and by (ξ, η) the dual variables of (x, y). We consider partial differential operators written in the following form:

 $P(x, y, \partial/\partial x, \partial/\partial y) = \sum_{i+|\alpha| \leq 2} x^{\epsilon(i,\alpha)} a_{i\alpha}(x, y) (\partial/\partial x)^i (\partial/\partial y)^{\alpha}.$

Here $\kappa(i, \alpha)$, $i+|\alpha| \leq 2$, are integers defined by

$$\kappa(i,\,lpha) = egin{cases} q|lpha| & i\!+\!|lpha|\!=\!2 \ q' & i\!=\!0,\,|lpha|\!=\!1 \ 0 & ext{otherwise}, \end{cases}$$

where q and q' are integers which satisfy $0 \leq q' \leq q-2$. Furthermore, $a_{i\alpha}(x, y), i+|\alpha| \leq 2$, are holomorphic at the origin, and $a_{2,0}=1$.

Remark. If q'=q-1, the above operators are said to satisfy Levi condition. Several authors considered singular Cauchy problems for such operators (see Nakane [1], Takasaki [2], and Urabe [4]). Perhaps we can also treat this case, but this requires some modifications which are not trivial. Thus we consider only the case of $q' \leq q-2$.

We assume that the equation

$$\sum_{i+|\alpha|=2} x^{q|\alpha|} a_{i\alpha}(x, y) \xi^i \eta^{\alpha} = 0$$

has two roots $\xi = x^q \lambda_i(x, y, \eta)$, i=1, 2, where $\lambda_i(x, y, \eta)$, i=1, 2, are holomorphic at $x=0, y=0, \eta=(1, 0, \dots, 0)$ and homogeneous of degree 1 in η . Furthermore we assume that

$$\lambda_1(x, y, \eta) \neq \lambda_2(x, y, \eta)$$

at $x=0, y=0, \eta=(1, 0, \dots, 0)$.

Our purpose is to solve the following singular Cauchy problems:

(1)
$$\begin{cases} Pu(x, y) = 0\\ (\partial/\partial x)^{i}u(0, y) = \dot{u}_{i}(y) & i = 0, 1 \end{cases}$$

Here $\dot{u}_i(y)$, i=0, 1, are multivalued holomorphic functions defined on $\{y \in C^n; |y_j| < R, j=1, 2, \dots, n, y_1 \neq 0\}$ with some R > 0, and satisfy $|\dot{u}_i(y)| \leq C \exp\{C |y_1|^{-(q-1-q')/(q+1)}\}$

with some C > 0 there.

Let us define $\varphi_i(x, y)$, i=1, 2, by