3. On Hirota's Difference Equations

By Tetsuji Miwa
Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., Jan. 12, 1982)

§ 1. The aim of this note is to exploit the operator approach [1] to soliton equations in studying the following non linear difference equation proposed by Hirota [2]:

$$
\begin{align*}
& \alpha f(\lambda+1, \mu, \nu) f(\lambda-1, \mu, \nu)+\beta f(\lambda, \mu+1, \nu) f(\lambda, \mu-1, \nu) \tag{1.1}\\
& \quad+\gamma f(\lambda, \mu, \nu+1) f(\lambda, \mu, \nu-1)=0,
\end{align*}
$$

where α, β and γ are constants satisfying $\alpha+\beta+\gamma=0$.
Hirota [2] found the difference Lax pair for (1.1), proved the existence of three soliton solutions and gave an ample list of non linear differential and/or difference equations obtained by taking suitable limits of (1.1). Among them is the KP (Kadomtsev-Petviashvili) equation which is written in Hirota's form as follows:

$$
\begin{equation*}
\left(D_{1}^{4}+3 D_{2}^{2}-4 D_{1} D_{3}\right) \tau \cdot \tau=0 \tag{1.2}
\end{equation*}
$$

He also remarked a significant coincidence of the phase shift term in soliton solutions of the equations (1.1) and (1.2).

Here I shall give an explicit transformation which connects the hierarchy of the KP equation and that of Hirota's difference equation.

One of the striking discoveries of Mikio and Yasuko Sato [3] on the former was that it admits the characters of the general linear group as its solutions with

$$
\begin{equation*}
x_{j}=\operatorname{trace} \frac{X^{j}}{j}, \quad X \in G L(N) \quad(j=1,2,3, \cdots) \tag{1.3}
\end{equation*}
$$

as the continuum variables. The transformation tells us that the latter, in a slightly modified form, admits them also as its solutions with the multiplicities of the eigenvalues of X as the discrete variables.

The transformation gives us also an operator solution to Hirota's difference equation in the sense of [1]. It reduces to operator solutions to equations in Hirota's list in the limit. Here I discuss briefly those for the two dimensional Toda lattice.

Finally I show that a similar consideration for the BKP hierarchy [1] leads us to the following discrete version:

$$
\begin{align*}
& \alpha f(\lambda+1, \mu, \nu) f(\lambda-1, \mu, \nu)+\beta f(\lambda, \mu+1, \nu) f(\lambda, \mu-1, \nu) \\
& \quad+\gamma f(\lambda, \mu, \nu+1) f(\lambda, \mu, \nu-1)+\delta f(\lambda+1, \mu+1, \nu+1) \tag{1.4}\\
& \quad \times f(\lambda-1, \mu-1, \nu-1)=0,
\end{align*}
$$

where α, β, γ and δ are constants satisfying $\alpha+\beta+\gamma+\delta=0$.
§2. Let us recall the operator solution to the KP hierarchy.

