3. On Hirota's Difference Equations

By Tetsuji MIWA

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1982)

§ 1. The aim of this note is to exploit the operator approach [1] to soliton equations in studying the following non linear difference equation proposed by Hirota [2]:

(1.1)
$$\begin{aligned} \alpha f(\lambda+1,\mu,\nu)f(\lambda-1,\mu,\nu) + \beta f(\lambda,\mu+1,\nu)f(\lambda,\mu-1,\nu) \\ + \gamma f(\lambda,\mu,\nu+1)f(\lambda,\mu,\nu-1) = 0, \end{aligned}$$

where α , β and γ are constants satisfying $\alpha + \beta + \gamma = 0$.

Hirota [2] found the difference Lax pair for (1.1), proved the existence of three soliton solutions and gave an ample list of non linear differential and/or difference equations obtained by taking suitable limits of (1.1). Among them is the KP (Kadomtsev-Petviashvili) equation which is written in Hirota's form as follows:

(1.2) $(D_1^4+3D_2^2-4D_1D_3)\tau\cdot\tau=0.$ He also remarked a significant coincidence of the phase shift term in soliton solutions of the equations (1.1) and (1.2).

Here I shall give an explicit transformation which connects the hierarchy of the KP equation and that of Hirota's difference equation.

One of the striking discoveries of Mikio and Yasuko Sato [3] on the former was that it admits the characters of the general linear group as its solutions with

(1.3)
$$x_j = \text{trace } \frac{X^j}{j}, \quad X \in GL(N) \quad (j = 1, 2, 3, \cdots)$$

as the continuum variables. The transformation tells us that the latter, in a slightly modified form, admits them also as its solutions with the multiplicities of the eigenvalues of X as the discrete variables.

The transformation gives us also an operator solution to Hirota's difference equation in the sense of [1]. It reduces to operator solutions to equations in Hirota's list in the limit. Here I discuss briefly those for the two dimensional Toda lattice.

Finally I show that a similar consideration for the BKP hierarchy [1] leads us to the following discrete version:

$$\alpha f(\lambda+1,\mu,\nu)f(\lambda-1,\mu,\nu)+\beta f(\lambda,\mu+1,\nu)f(\lambda,\mu-1,\nu)$$

(1.4)
$$+\gamma f(\lambda,\mu,\nu+1)f(\lambda,\mu,\nu-1)+\delta f(\lambda+1,\mu+1,\nu+1)$$

$$\times f(\lambda-1,\mu-1,\nu-1)=0,$$

where α , β , γ and δ are constants satisfying $\alpha + \beta + \gamma + \delta = 0$.

§2. Let us recall the operator solution to the KP hierarchy.