14. Analytic Hypo-Ellipticity and Propagation of Regularity for Operators with Non-Involutory Characteristics

By Toshinori ÔAKU

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1982)

We study matrices of microdifferential operators of the form $P = P_1P_2I_m + Q$; here P_1 and P_2 are scalar operators such that the Poisson bracket of their principal symbols never vanishes, Q is an $m \times m$ matrix of operators of lower order, and I_m denotes the unit matrix of degree m.

In §1, we study the propagation of micro-analyticity of solutions of the equation Pu=0 when the principal symbol of P_1 is real. Theorem 1 is a partial generalization of Corollary 3.7 of [3], where the principal symbol of P_2 was also assumed to be real.

In §2, we study the analytic hypo-ellipticity of P when P_1 can be transformed into the form $D_1 + \sqrt{-1}x_1^k D_n$ in a neighborhood of $(0, \sqrt{-1}dx_n) \in \sqrt{-1}T^* \mathbb{R}^n$ with a positive odd integer k (cf. [5]). Theorem 2 generalizes our previous result (Corollary of [4]) which corresponds to the case k=1. To prove Theorem 2, we use different methods from those sketched in [4]; Schapira's theory of positivity (cf. [6]) enables us to reduce the problem of analytic hypo-ellipticity to that of propagation of micro-analyticity of solutions of such equations as treated in §1.

§ 1. Propagation of regularity. Set $X = C^n \ni z = (z_1, \dots, z_n)$ and $M = \mathbb{R}^n \ni x = (x_1, \dots, x_n)$. We denote by $T^*X = \{(z, \zeta) \in C^n \times C^n\}$ the cotangent bundle of X, by $T^*_M X = \{(x, \sqrt{-1\eta}) ; x \in \mathbb{R}^n, \eta \in \mathbb{R}^n\}$ the conormal bundle of M in X, and by C_M the sheaf on $T^*_M X$ of microfunctions. For holomorphic functions f and g defined on an open subset of T^*X , we set

$$H_{f} = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial \zeta_{j}} \frac{\partial}{\partial z_{j}} - \frac{\partial f}{\partial z_{j}} \frac{\partial}{\partial \zeta_{j}} \right)$$

and $\{f, g\} = H_{f}g$, and denote by f^{c} the complex conjugate of f with respect to $T_{M}^{*}X$; i.e., f^{c} is the unique holomorphic function such that $f^{c} = \bar{f}$ holds on $T_{M}^{*}X$. We denote by σ the principal symbol of a microdifferential operator of finite order, and by σ_{j} the symbol of order j when the operator is of order at most j.

Let P_1 and P_2 be microdifferential operators of order l_1 and l_2 respectively defined in a neighborhood of $p \in T^*_M X - M$. Set $l = l_1 + l_2$ and let $Q = (Q_{ij})$ be an $m \times m$ matrix of microdifferential operators of order