13. Construction of Integral Basis. I

By Kōsaku Okutsu

Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1982)

Let f(x) be a monic irreducible separable polynomial of degree nin o[x], where o is a principal ideal domain. Let k be the quotient field of o, and θ one of the roots of f(x) in an algebraic closure of \bar{k} of k. The purpose of this series of papers is to give an explicit formula for an o-basis of the integral closure o_k of o in $K = k(\theta)$. We begin with considering the "local case".

§ 1. Throughout this section, let \circ be a discrete valuation ring with maximal ideal \mathfrak{p} , k its quotient field, and assume that k is complete under the valuation induced by \mathfrak{p} . Let π be a generator of \mathfrak{p} . We denote by $| \ |$ a fixed valuation on the algebraic closure \bar{k} of k, which is an extension of the valuation corresponding to \mathfrak{p} . Let f(x)be a monic irreducible separable polynomial in $\mathfrak{o}[x]$ of degree n, and θ one of the roots of f(x) in \bar{k} . For a polynomial $h(x) = a_0 x^m + \cdots + a_m$ in $\mathfrak{o}[x]$, we put $|h(x)| = \sup_{i=0,\dots,m} |a_i|$. Then we have the following

Proposition 1. For any positive integer m(<n), there exists a monic polynomial $g_m(x)$ of degree m in $\mathfrak{o}[x]$, having the following property:

For any polynomial g(x) of degree m in $\mathfrak{o}[x]$, we have

$$|g_m(heta)| \leq rac{|g(heta)|}{|g(x)|}$$

Definition. We will call any monic polynomial $g_m(x)$ with the property in the Proposition 1 a *divisor polynomial* of degree m of θ , or of f(x). We put $\mu_m = \operatorname{ord}_{\mathfrak{p}}(g_m(\theta))$, and $\nu_m = [\mu_m]$, where [] is the Gauss symbol. ν_m will be called the *integrality index* of degree m of θ , or of f(x). $(g_m(x)$ is not uniquely determined by θ and m, but it is clear that ν_m does not depend on the choice of $g_m(x)$.)

Theorem 1. We denote by \mathfrak{o}_k the valuation ring in $K = k(\theta)$. Let $g_m(x), \nu_m$ be a divisor polynomial and the integrality index of degree m of θ ($m=1, 2, \dots, n-1$), and put $g_0(x)=1, \nu_0=0$. Then we have $\mathfrak{o}_K = \sum_{m=0}^{n-1} \mathfrak{o}((g_m(\theta))/\pi^{\nu_m})$.

Proof. For any $m=0, 1, \dots, n-1$ we have $|(g_m(\theta))/\pi^{\nu_m}| \le 1$, so that $\sum_{m=0}^{n-1} \mathfrak{o}((g_m(\theta))/\pi^{\nu_m}) \subset \mathfrak{o}_K$. As $\mathfrak{o}_K \subset \mathfrak{o}[\theta]/\pi^i$ for some positive integer l, there exists, for any element α of \mathfrak{o}_K , some polynomial h(x) in $\mathfrak{o}[x]$ such that $\alpha = h(\theta)/\pi^i$, where the degree d of h(x) is less than n. As $g_m(x)$ is monic, we can find d+1 elements r_0, \dots, r_d of \mathfrak{o} such that h(x)