13. Construction of Integral Basis. I

By Kōsaku OKutsu
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 12, 1982)

Let $f(x)$ be a monic irreducible separable polynomial of degree n in $\mathfrak{o}[x]$, where \mathfrak{o} is a principal ideal domain. Let k be the quotient field of \mathfrak{o}, and θ one of the roots of $f(x)$ in an algebraic closure of \bar{k} of k. The purpose of this series of papers is to give an explicit formula for an \mathfrak{o}-basis of the integral closure \mathfrak{o}_{k} of \mathfrak{o} in $K=k(\theta)$. We begin with considering the "local case".
§ 1. Throughout this section, let \mathfrak{o} be a discrete valuation ring with maximal ideal \mathfrak{p}, k its quotient field, and assume that k is complete under the valuation induced by \mathfrak{p}. Let π be a generator of \mathfrak{p}. We denote by | | a fixed valuation on the algebraic closure \bar{k} of k, which is an extension of the valuation corresponding to \mathfrak{p}. Let $f(x)$ be a monic irreducible separable polynomial in $\mathfrak{o}[x]$ of degree n, and θ one of the roots of $f(x)$ in \bar{k}. For a polynomial $h(x)=a_{0} x^{m}+\cdots+a_{m}$ in $\mathfrak{0}[x]$, we put $|h(x)|=\sup _{i=0, \ldots, m}\left|a_{i}\right|$. Then we have the following

Proposition 1. For any positive integer $m(<n)$, there exists a monic polynomial $g_{m}(x)$ of degree m in $\mathfrak{o}[x]$, having the following property:

For any polynomial $g(x)$ of degree m in $\mathfrak{0}[x]$, we have

$$
\left|g_{m}(\theta)\right| \leq \frac{|g(\theta)|}{|g(x)|}
$$

Definition. We will call any monic polynomial $g_{m}(x)$ with the property in the Proposition 1 a divisor polynomial of degree m of θ, or of $f(x)$. We put $\mu_{m}=\operatorname{ord}_{\mathfrak{p}}\left(g_{m}(\theta)\right)$, and $\nu_{m}=\left[\mu_{m}\right]$, where [] is the Gauss symbol. ν_{m} will be called the integrality index of degree m of θ, or of $f(x)$. ($g_{m}(x)$ is not uniquely determined by θ and m, but it is clear that ν_{m} does not depend on the choice of $g_{m}(x)$.)

Theorem 1. We denote by o_{k} the valuation ring in $K=k(\theta)$. Let $g_{m}(x), \nu_{m}$ be a divisor polynomial and the integrality index of degree m of $\theta(m=1,2, \cdots, n-1)$, and put $g_{0}(x)=1, \nu_{0}=0$. Then we have \mathfrak{o}_{K} $=\sum_{m=0}^{n-1} \mathrm{~d}\left(\left(g_{m}(\theta)\right) / \pi^{\nu m}\right)$.

Proof. For any $m=0,1, \cdots, n-1$ we have $\left|\left(g_{m}(\theta)\right) / \pi^{\nu m}\right| \leq 1$, so that $\sum_{m=0}^{n-1} \mathfrak{p}\left(\left(g_{m}(\theta)\right) / \pi^{\nu m}\right) \subset \mathfrak{o}_{K}$. As $\mathfrak{o}_{K} \subset \mathfrak{o}[\theta] / \pi^{l}$ for some positive integer l, there exists, for any element α of \mathfrak{o}_{K}, some polynomial $h(x)$ in $\mathfrak{o}[x]$ such that $\alpha=h(\theta) / \pi^{l}$, where the degree d of $h(x)$ is less than n. As $g_{m}(x)$ is monic, we can find $d+1$ elements r_{0}, \cdots, r_{d} of \mathfrak{o} such that $h(x)$

