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1. Statement of the results. For an integer/_>3, let us define
a polynomial P, of degree p4"

P,(x)=x+k(x-+x-+. +x)+l.
In this note, we prove the ollowing theorem.
Theorem. 1. For even p, P,(x) is irreducible over Z. For odd

p, (x+ 1)-P,(x) is irreducible over Z.
2. The polynomial has the following decompositions.

19/2--1

P,p(x)--(x+c)(x+c-1) [I (x-e)(x-) for even p
i=l

(p-I)/2-1

(x,+ 1)(x+a)(x +c-) I-[ (x-- s)(x--) for odd p

where c is a real number such that 0la-k+l[(k--1)-(-) and
=1, i=1, ..., [p/2]-1. Here means the complex conjugate of e and

l l=
3. The roots c, , ..., /_ in the above expression are multipli-

catively independent in C ={a e C" c:/:0}.
The theorem is proven in [1] 3 (3.8) 2) or the case k=3. Then

Prof. G. Fujiski sked the author whether it is true or k_3. In
fact it is true as we see in this note. The uthor would like to express
his gratitude to Prof. G. Fujisaki.

2. A sketch of the proof of the theorem. For a fixed k, the
sequence P=P,, p>_4 of the polynomials satisfies the following
recursion ormula.
(2.1) Pp+(x)--(x+l)P(x)-xP_(x) or p_4.

Define new polynomials in z x+ x- by,
(2.2) Qq(z) "=x-qP.(x) q--2, , 4,

R(z) "=(x+l)-lx-P2q+(x) q--2, 3, 4, ....
Then the recursion ormula (2.1) turns out to be,

(2.3) Qq+(z)--zQ(z)-Q_l(z) q=2,
R+(z)=zR(z)-Rq_(z) q=2,

Now let us show the following assertion.

Assertion. The equation Q(z)=0 (resp. Rq(z)=0) has q real simple
roots, q-1 of them lie in the interval (-2, 2) and the remaining one
lies in the interval (- oo, 2).


