104. Certain Irreducible Polynomials with Multiplicatively Independent Roots

By Kyoji Saito
Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Kunihiko Kodaira, m. J. A., Nov. 12, 1982)

§ 1. Statement of the results. For an integer $k \geq 3$, let us define a polynomial $P_{k, p}$ of degree $p \geq 4$:

$$
P_{k, p}(x)=x^{p}+k\left(x^{p-1}+x^{p-2}+\cdots+x\right)+1 .
$$

In this note, we prove the following theorem.
Theorem. 1. For even $p, P_{k, p}(x)$ is irreducible over Z. For odd $p,(x+1)^{-1} P_{k, p}(x)$ is irreducible over Z.
2. The polynomial has the following decompositions.

$$
\begin{aligned}
P_{k, p}(x) & =(x+\alpha)\left(x+\alpha^{-1}\right) \prod_{i=1}^{p / 2-1}\left(x-\varepsilon_{i}\right)\left(x-\bar{\varepsilon}_{i}\right) \quad \text { for even } p \\
& =(x+1)(x+\alpha)\left(x+\alpha^{-1}\right) \prod_{i=1}^{(p-1) / 2-1}\left(x-\varepsilon_{i}\right)\left(x-\bar{\varepsilon}_{i}\right) \quad \text { for odd } p
\end{aligned}
$$

where α is a real number such that $0<|\alpha-k+1|<(k-1)^{-(p-3)}$ and $\left|\varepsilon_{i}\right|$ $=1, i=1, \cdots,[p / 2]-1$. Here $\bar{\varepsilon}$ means the complex conjugate of ε and $|\varepsilon|=\sqrt{\varepsilon} \bar{\varepsilon}$.
3. The roots $\alpha, \varepsilon_{1}, \cdots, \varepsilon_{[p / 2]-1}$ in the above expression are multiplicatively independent in $C^{\times}=\{\alpha \in C: \alpha \neq 0\}$.

The theorem is proven in [1] § $3(3.8) 2$) for the case $k=3$. Then Prof. G. Fujisaki asked the author whether it is true for $k \geq 3$. In fact it is true as we see in this note. The author would like to express his gratitude to Prof. G. Fujisaki.
§ 2. A sketch of the proof of the theorem. For a fixed k, the sequence $P_{p}=P_{k, p}, p \geq 4$ of the polynomials satisfies the following recursion formula.

$$
\begin{equation*}
P_{p+2}(x)=\left(x^{2}+1\right) P_{p}(x)-x^{2} P_{p-2}(x) \quad \text { for } p \geq 4 . \tag{2.1}
\end{equation*}
$$

Define new polynomials in $z=x+x^{-1}$ by,

$$
\begin{array}{ll}
Q_{q}(z):=x^{-q} P_{2 q}(x) & q=2,3,4, \ldots \tag{2.2}\\
R_{q}(z):=(x+1)^{-1} x^{-q} P_{2 q+1}(x) & q=2,3,4, \ldots
\end{array}
$$

Then the recursion formula (2.1) turns out to be,

$$
\begin{array}{ll}
Q_{q+1}(z)=z Q_{q}(z)-Q_{q-1}(z) & q=2, \cdots \tag{2.3}\\
R_{q+1}(z)=z R_{q}(z)-R_{q-1}(z) & q=2, \cdots
\end{array}
$$

Now let us show the following assertion.
Assertion. The equation $Q_{q}(z)=0\left(\right.$ resp. $\left.R_{q}(z)=0\right)$ has q real simple roots. $q-1$ of them lie in the interval $(-2,2)$ and the remaining one lies in the interval $(-\infty,-2)$.

