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1. Introduction. We let dm denote a a finite positive measure
and L(dm) a usual Hilbert space composed of dm integrable complex
valued functions F(t) on a dm measurable set T and with finite norms

[[FtI()--;r [F(t)l dm(t).

For an arbitrary set E and any fixed complex valued unction h(t, p)
on T E satisfying h(t, p) e L(dm) for any fixed p e E, we consider the
integral transform of F L(dm)

f(p)- F(t)h(t, p)dm(t).(1.1)
JT

Then, we first show that the functions f(p) form a Hilbert (possibly
finite dimensional) space H which is naturally determined by the
integral transform. Furthermore, we establish the fundamental rela-
tionship between the two Hilbert spaces L(dm) and H.
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2. The image by the integral transform and norm inequality.
We define the unction K(p, q) on E E

K(p, q)-- h(t, q)h(t p)dm(t).(2.1)
JT

Note that K(p, q) is a positive matrix on E in the sense of Moore; i.e.,

aveg(p, p) >= 0
u=l ;=I

for any finite set {p} of E and for any complex numbers {}. This
implies that for K(p, q), there exists a uniquely determined Hilbert
space H composed of functions on E admitting K(p, q) as a reproduc-
ing kernel [2], p. 344 and [1], p. 143. Then, we obtain

Theorem 1.1. For the integral transform (1.1), we obtain

(2.2) ]ftlr IF(t)] din(t).

Further, (1.1) gives a mapping from L2(dm) onto H, and for any f e H,

(2.3) IIfllS=min
r
IF(t)12 dm(t)

w here the minimum is taken over all functions F e L2(dm) satisfying


