79. Meromorphic Solutions of Some Difference Equations of Higher Order. II

By Niro Yanagihara

Department of Mathematics, Chiba University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1982)

1. Introduction. In this note, we will study the difference equation of order n:

(1.1) $\alpha_n y(x+n) + \alpha_{n-1} y(x+n-1) + \cdots + \alpha_1 y(x+1) = R(y(x)),$ where R(w) is a rational function of w:

(1.2)
$$\begin{cases} R(w) = P(w)/Q(w), \\ P(w) = a_p w^p + \dots + a_1 w + a_0, \\ Q(w) = b_q w^q + \dots + b_1 w + b_0, \end{cases}$$

in which $\alpha_n, \dots, \alpha_1; a_p, \dots, a_0; b_q, \dots, b_0$ are consts, and $\alpha_n a_p b_q \neq 0$. P(w) and Q(w) are supposed to be mutually prime. In the below, we denote by p and q the degrees of the nominator P(w) and of the denominator Q(w), respectively. We put

(1.3) $q_0 = \max(p, q).$ When n=1, the equation (1.1) reduces to

(1.4)
$$y(x+1) = R(y(x)).$$

Some properties of meromorphic solutions of (1.4) are studied in [1]– [3]. Especially, we proved in [2, p. 311, Theorem 1], that

(1.5) {any meromorphic solution of (1.4) is transcendental and of order ∞ in the sense of Nevanlinna, if $q_0 \ge 2$.

(1.5) is not valid if n > 1, but we proved in [4],

Proposition 1. When p > q, then any meromorphic solution of (1.1) is transcendental.

Proposition 2. When p > q+1, then any meromorphic solution of (1.1) is of order ∞ in the sense of Nevanlinna.

Proposition 3. When $q_0 > n$, then any meromorphic solution of (1.1) is transcendental and of order ∞ in the sense of Nevanlinna.

We will show that Propositions 1–3 are exact, i.e.,

Theorem 1. Suppose $p \leq q \leq n$. Then there is an equation of the form (1.1) which admits a rational solution.

Theorem 2. Suppose $p=q+1 \leq n$. Then there is an equation of the form (1.1) which admits a transcendental solution of finite order.

Theorem 3. Suppose $p \leq q \leq n$. Then there is an equation of the form (1.1) which admits a transcendental solution of finite order.

Further, we will show

Theorem 4. For any p, q, and n, there is an equation of the form