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1. Introduction. In this note, we will study the difference equa-
tion of order n"

(1.1) any(x+n)+cn_ly(x+n-1)+ +cly(x+l)-R(y(x)),
where R(w) is a rational function of w"

(R(w)=P(w)/Q(w),
(1.2) P(w)=awP+ +a,W+ao,

[Q(w)=bqwq+ +bw+bo,
in which c,...,a;a,...,a0; b,..., b0 are consts, and anab=/=O.
P(w) and Q(w) are supposed to be mutually prime. In the below, we
denote by p and q the degrees of the nominator P(w) and of the de-
nominator Q(w), respectively. We put
(1.3) qo-max (p, q).

When n-1, the equation (1.1) reduces to
(1.4) y(x+ 1)-R(y(x)).
Some properties of meromorphic solutions of (1.4) are studied in [1]-
[3]. Especially, we proved in [2, p. 311, Theorem 1], that

(1.5) any meromorphic solution of (1.4) is transcendental and
[of order oo in the sense of Nevanlinna, if q0>__2.

(1.5) is not valid if n>l, but we proved in [4],
Proposition 1. When p>q, then any meromorphic solution of

(1.1) is transcendental.
Proposition 2. When p>q+l, then any meromorphic solution

of (1.1) is of order oo in the sense of Nevanlinna.
Proposition 3. When qo>n, then any meromorphic solution of

(1.1) is transcendental and of order oo in the sense of Nevanlinna.
We will show that Propositions 1-3 are exact, i.e.,
Theorem 1. Suppose p <_ q<_n. Then there is an equation of the

form (1.1) which admits a rational solution.
Theorem 2. Suppose p=q+ l <__n. Then there is an equation of

the form (1.1) which admits a transcendental solution of finite order.
Theorem 3. Suppose p<=qn. Then there is an equation of the

form (1.1) which admits a transcendental solution of finite order.
Further, we will show
Theorem 4. For any p, q, and n, there is an equation of the form


