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In this paper, we shall prove that an Ml-space X can be imbedded
in an M-space Z(X) as a closed subset in such a way that X is an
AR (/1) (resp. ANR (/1)) if and only if X is a retract (resp. neighbor-
hood retract) of Z(X), where / is the class of all M-spaces. More-
over, we shall prove that an Ml-space is an AE (/) (resp. ANE (/))
if and only if it is an AR (t/1) (resp. ANR (//)).

Throughout this paper, all spaces are assumed to be Hausdorff
topological spaces and all maps to be continuous. N denotes the
set of all natural numbers. Let C be a class of spaces. For the defi-
nitions of AR (g), ANR (), AE () and ANE (C), see [4]. Note that
in [4] each class 6’ is weakly hereditary; that is to say, if C contains
X, then it contains every closed subspace of X. However, in this
paper we consider the class /1 of all M-spaces though it is unknown
if ?t/ is weakly hereditary.

1. Auxiliary lemma. For the definitions of uniformly ap-
proaching anti-cover and D-space, see [6]. The ollowing lemma was
essentially proved in the proof of [5, Lemma, 3.2].

Lemma 1.1. Let X be a D-space, F a closed subset of X and f a
map from F into a space Y. Let Y also denote the natural imbedding

of Y in XO Y=Z. If cU={U." e A} is a closure preserving open
collection in Y, then for each c e A there is a collection {U’" fl e B.} of
open subsets in Z satisfying the following three conditions"

(C1) cU’= {U’" e B., c e A} is closure preserving in Z,
(C2) for each fl e B., U’ Y= U., and for every open subset V in

Z with V Y U. there is fle B. such that U. U’ V, and
(C3) for every open subset W in Y, there is an open subset W of

Z such that W’ Y=W and WI( U’= whenever fl e B. and W( U.

Proof. Let p be the projection from the ree union X Y to Z.
Since X is a D-space, X is an M-space. Therefore X is monotonically
normal. Let G be a monotone normality operator for X satisfying
the properties in [3, Lemma 2.2]. Since X is a D-space, F has a uni-
formly approaching anti-cover cl?={V " e A} in X. In particular,
since X is hereditarily paracompact, we may assume that (? is locally
finite in X-F. For each U. ecU, let U’.=(G(x,F-p-(U.))’x


