70. Retraction and Extension of Mappings of M_1 -Spaces

By Takuo MIWA

Department of Mathematics, Shimane University

(Communicated by Kôsaku YOSIDA, M. J. A., June 15, 1982)

In this paper, we shall prove that an M_1 -space X can be imbedded in an M_1 -space Z(X) as a closed subset in such a way that X is an AR (\mathcal{M}_1) (resp. ANR (\mathcal{M}_1)) if and only if X is a retract (resp. neighborhood retract) of Z(X), where \mathcal{M}_1 is the class of all M_1 -spaces. Moreover, we shall prove that an M_1 -space is an AE (\mathcal{M}_1) (resp. ANE (\mathcal{M}_1)) if and only if it is an AR (\mathcal{M}_1) (resp. ANR (\mathcal{M}_1)).

Throughout this paper, all spaces are assumed to be Hausdorff topological spaces and all maps to be continuous. N denotes the set of all natural numbers. Let C be a class of spaces. For the definitions of AR (C), ANR (C), AE (C) and ANE (C), see [4]. Note that in [4] each class C is weakly hereditary; that is to say, if C contains X, then it contains every closed subspace of X. However, in this paper we consider the class \mathcal{M}_1 of all M_1 -spaces though it is unknown if \mathcal{M}_1 is weakly hereditary.

1. Auxiliary lemma. For the definitions of uniformly approaching anti-cover and D-space, see [6]. The following lemma was essentially proved in the proof of [5, Lemma, 3.2].

Lemma 1.1. Let X be a D-space, F a closed subset of X and f a map from F into a space Y. Let Y also denote the natural imbedding of Y in $X \bigcup_{f} Y = Z$. If $\bigcup = \{U_{\alpha} : \alpha \in A\}$ is a closure preserving open collection in Y, then for each $\alpha \in A$ there is a collection $\{U'_{\beta} : \beta \in B_{\alpha}\}$ of open subsets in Z satisfying the following three conditions:

(C1) $U' = \{U'_{\beta} : \beta \in B_{\alpha}, \alpha \in A\}$ is closure preserving in Z,

(C2) for each $\beta \in B_{\alpha}$, $U'_{\beta} \cap Y = U_{\alpha}$, and for every open subset V in Z with $V \cap Y = U_{\alpha}$ there is $\beta \in B_{\alpha}$ such that $U_{\alpha} \subset U'_{\beta} \subset V$, and

(C3) for every open subset W in Y, there is an open subset W' of Z such that $W' \cap Y = W$ and $W' \cap U'_{\beta} = \phi$ whenever $\beta \in B_{\alpha}$ and $W \cap U_{\alpha} = \phi$.

Proof. Let p be the projection from the free union $X \cup Y$ to Z. Since X is a D-space, X is an M_1 -space. Therefore X is monotonically normal. Let G be a monotone normality operator for X satisfying the properties in [3, Lemma 2.2]. Since X is a D-space, F has a uniformly approaching anti-cover $\mathbb{CV} = \{V_{\lambda} : \lambda \in A\}$ in X. In particular, since X is hereditarily paracompact, we may assume that \mathbb{CV} is locally finite in X-F. For each $U_a \in \mathbb{C}$, let $U'_a = \bigcup \{G(x, F-p^{-1}(U_a)): x\}$