39. A Cyclic Vector in the Tensor Product of Irreducible Representations of Compact Groups

By Nobuhiko Tatsudma
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., April 12, 1982)

1. Let G be a non-abelian connected compact Lie group and T a maximal torus in G with Lie algebras \mathfrak{g}, t respectively. With respect to t, we introduce a lexicographic order on the set of roots of g_{c} (the complexification of \mathfrak{g}). And we denote by $X_{k}^{+}(k=1,2, \cdots, n)$ (resp. X_{k}^{-}) root vectors for all positive roots (resp. negative roots) in this order.

Any unitary representation U is canonically able to be extended to a representation $U(X)$ of g_{c}. When U is irreducible, we can define uniquely its highest weight μ as a linear form on $\sqrt{-1} t$. The highest (resp. the lowest) weight vector v in U is characterized up to constant as a vector satisfying $U\left(X_{k}^{+}\right) v=0$ (resp. $U\left(X_{k}^{-}\right) v=0$) for all k.

In [1] Theorem 3', C. Fronsdal and T. Hirai proved the following
Theorem. Let $v_{1} \in E_{1}$ (resp. $v_{2} \in E_{2}$) be the non-zero highest (resp. lowest) weight vector for irreducible representation U_{1} (resp. U_{2}) of G. Then the vector $v_{1} \otimes v_{2}$ in $E_{1} \otimes E_{2}$ is a cyclic vector for the tensor product $U_{1} \otimes U_{2}$.

The purpose of this paper is to give another proof of this theorem.
2. Proof of Theorem. Since G is compact, we can assume that U_{1}, U_{2} are unitary. And it is enough to show that for any irreducible component U in $U_{1} \otimes U_{2}$ with representation space E in $E_{1} \otimes E_{2}$,
(1) the vector $v_{1} \otimes v_{2}$ is not orthogonal to E.

By weight vectors $\mathrm{v}_{j}^{\alpha} \in E_{j}\left(\alpha=1,2, \cdots, m_{j}\right)\left(v_{1}=v_{1}^{1}, v_{2}=v_{2}^{1}\right)$, any v in E is expanded in a unique way as

$$
\begin{equation*}
v=\sum_{\alpha, \beta} a\left(v, v_{1}^{\alpha}, v_{2}^{\beta}\right) v_{1}^{\alpha} \otimes v_{2}^{\beta} . \tag{2}
\end{equation*}
$$

Especially the highest weight vector w in U is written as

$$
\begin{equation*}
w=\sum_{\alpha} v_{1}^{\alpha} \otimes u^{\alpha} \quad\left(u^{\alpha} \in E_{2}\right), \tag{3}
\end{equation*}
$$

here

$$
u^{\alpha}=\sum_{\beta} a\left(w, v_{1}^{\alpha}, v_{2}^{\beta}\right) v_{2}^{\beta} .
$$

The vector w satisfies for any k,

$$
\begin{equation*}
U\left(X_{k}^{+}\right) w=\sum_{\alpha} U_{1}\left(X_{k}^{+}\right) v_{1}^{\alpha} \otimes u^{\alpha}+\sum_{\alpha} v_{1} \otimes U_{2}\left(X_{k}^{+}\right) u^{\alpha}=0 \tag{4}
\end{equation*}
$$

Let the weight μ_{1}^{γ} be the highest among the set $\left\{\mu_{1}^{\alpha} ; u^{\alpha} \neq 0\right.$ in (4) $\}$. Since the vector $U_{1}\left(X_{k}^{+}\right) v_{1}^{\gamma}$ has the weight higher than μ_{1}^{γ}, it must vanish for

