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1. Introduction. Let P(x,D) be a linear partial differential
operator with C-coefficients defined in R and strictly hyperbolic with
respect to x,. Let E _q)’(Y)’(R) be k-th parametrices, i.e.

P(x, D)E--0, D’-EI_-0--I,
where Y={x e R; x=0} is the initial plane (see e.g. [1]). We want
to study the sharpness of distributions E(x, y):=E8(x-y) here we
take y e Y as parameters. If we take

A A(y) := {(x, ) e T* R (x, ) is on a bicharacteristic strip
through some (y, ) e T*R with P(y, 0=0},

W= W(y) A(y),
where " T*R--R is the natural projection, then we have

sing supp E,(x, y)c W(y).
Now take a point x e W and a component of Rn\W with x e 3w.

Then E(x, y) is said to be sharp at x from if there is a neighbour-
hood V o x and u e C(V) such that E(x, y)=u(x) on V V.

Near each point x e W, E(x, y) can be represented by a finite sum
of paired oscillatory integrals P(a, , x), for which L. Grding [3] dis-
covered a criterion for sharpness. But his arguments and proofs are
rather sketchily and, in part, incomplete. Our aim is to clarify the
situation and to give a rigorous proofs when x e W is a stable point.
Here we use

Definition. x e W is called a stable point if under small pertur-
bations of AcT*R (as conic Lagrangean manifolds) near -(x), the
configurations of W cannot be changed off local diffeomorphisms.

Note that our definition of stability may be zonsidered as a well
posedness for the problem of sharpness.

If =-(x) A consist o regular points (i.e. N: =dimT0A
g To (fibre)= 1 for 20 e u-(x) ( A), an easy criterion or sharpness are
given in [4]. So, in what ollows, we shall consider the case when
u-(x) A contains irregular points (i.e. the case when N>/2).

2. Suppose that u-(x) A consist of stable and irregular points.
Then we can prove that, as a germ at x, E(x, y) can be represented
by a finite sum of distributions of the from


