31. Classification of Projective Varieties of 4-Genus One

By Takao Fujita
Department of Mathematics, College of General Education,
University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1982)

Introduction. Let V be a subvariety (=irreducible reduced closed subscheme) of a projective space P^{N} defined over an algebraically closed field \Re of any characteristic. Set $n=\operatorname{dim} V, d=\operatorname{deg} V$ and $m=\operatorname{codim} V$ $=N-n$. In this note we always assume that the restriction mapping $H^{\circ}\left(\boldsymbol{P}^{N}, \mathcal{O}(1)\right) \rightarrow H^{\circ}(V, L)$ is bijective, where $L=\mathcal{O}_{V}(1)$. Then $\Delta=d-m-1$ $=n+d-h^{0}(V, L)$ is the Δ-genus of the polarized variety (V, L) (cf. [1] etc.).

It is well-known that $\Delta \geqq 0$ for every V as above. Moreover, we have the following

Theorem 0 (see, e.g., [1] if $\operatorname{char}(\Re)=0$ and [4] in general). If $\Delta=0$, then V is one of the following types:

1) $\left(P^{n}, \mathcal{O}(1)\right)$.
2) A hyperquadric.
3) A rational scroll. This means that $(V, L) \cong(\boldsymbol{P}(E), \mathcal{O}(1))$ for an ample vector bundle E on P^{1}.
4) A Veronese surface $\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right)$ in \boldsymbol{P}^{5}.
5) A generalized cone (this means that the set of the vertices may be a linear space of positive dimension) over a projective manifold of one of the above types 2)-4).

In this note we consider the case $\Delta=1$. Details and proofs will be published elsewhere.

As for non-singular varieties, we have the following
Theorem I (cf. [2] [3] and [4]). Let V be a projective non-singular variety as above with $\Delta=1$. Then the dualizing sheaf ω_{V} is isomorphic to $\mathcal{O}_{V}(1-n)$. Moreover, if $n \geqq 3$, then V is one of the following types:

1) A hypercubic. $d=3$.
2) A complete intersection of two hyperquadrics. $\quad d=4$.
3) A linear section of the Grassmann variety parametrizing lines in P^{4}, embedded by the Plücker coordinate. $\quad d=5$ and $n \leqq 6$.
4) (A hyperplane section of) the Segre variety $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ in \boldsymbol{P}^{8}. $d=6$.
5) The Segre variety $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ in $\boldsymbol{P}^{7} . \quad d=6$.
6) The blowing-up of \boldsymbol{P}^{3} at a point. $\quad d=7$.
7) Veronese threefold $\left(\boldsymbol{P}^{3}, \mathcal{O}(2)\right)$ in $\boldsymbol{P}^{9} . \quad d=8$.
