No. 3]

31. Classification of Projective Varieties of 4-Genus One

By Takao FUJITA

Department of Mathematics, College of General Education, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1982)

Introduction. Let V be a subvariety (=irreducible reduced closed subscheme) of a projective space P^N defined over an algebraically closed field \Re of any characteristic. Set $n = \dim V$, $d = \deg V$ and $m = \operatorname{codim} V$ = N - n. In this note we always assume that the restriction mapping $H^{\circ}(P^N, \mathcal{O}(1)) \rightarrow H^{\circ}(V, L)$ is bijective, where $L = \mathcal{O}_V(1)$. Then $\Delta = d - m - 1$ $= n + d - h^{\circ}(V, L)$ is the Δ -genus of the polarized variety (V, L) (cf. [1] etc.).

It is well-known that $\Delta \geq 0$ for every V as above. Moreover, we have the following

Theorem 0 (see, e.g., [1] if char $(\Re)=0$ and [4] in general). If $\Delta=0$, then V is one of the following types:

1) $(P^n, \mathcal{O}(1)).$

2) A hyperquadric.

3) A rational scroll. This means that $(V, L) \cong (P(E), \mathcal{O}(1))$ for an ample vector bundle E on P^1 .

4) A Veronese surface $(\mathbf{P}^2, \mathcal{O}(2))$ in \mathbf{P}^5 .

5) A generalized cone (this means that the set of the vertices may be a linear space of positive dimension) over a projective manifold of one of the above types 2)-4).

In this note we consider the case $\Delta = 1$. Details and proofs will be published elsewhere.

As for non-singular varieties, we have the following

Theorem I (cf. [2] [3] and [4]). Let V be a projective non-singular variety as above with $\Delta = 1$. Then the dualizing sheaf ω_V is isomorphic to $\mathcal{O}_V(1-n)$. Moreover, if $n \geq 3$, then V is one of the following types:

1) A hypercubic. d=3.

2) A complete intersection of two hyperquadrics. d=4.

3) A linear section of the Grassmann variety parametrizing lines in P^4 , embedded by the Plücker coordinate. d=5 and $n\leq 6$.

4) (A hyperplane section of) the Segre variety $P^2 \times P^2$ in P^8 . d=6.

5) The Segre variety $P^1 \times P^1 \times P^1$ in P^7 . d=6.

6) The blowing-up of P^3 at a point. d=7.

7) Veronese threefold $(\mathbf{P}^3, \mathcal{O}(2))$ in \mathbf{P}^3 . d=8.