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Introduction. Let V be a subvariety (-irreducible reduced closed
subscheme) of a projective space P defined over an algebraically closed
field of any characteristic. Set n-dim V, d--deg V and m-codim V
--N-n. In this note we always assume that the restriction mapping
H(PN, G(1))-H(V, L) is bijective, where L--Gv(1). Then =d-m-1
--n-d-h(V, L) is the z/-genus of the polarized variety (V, L) (cf. [1]
etc.).

It is well-known that z/__>0 for every V as above. Moreover, we
have the following

Theorem 0 (see, e.g., [1] if char ()=0 and [4] in general). If
--0, then V is one of the following types"

) (1", ()).
2) A hyperquadric.
3) A rational scroll. This means that (V, L)-(P(E), )(1)) for

ample vector bundle E on p1.

4) A Veronese surface (P, (2)) in P.
5) A generalized cone (this means that the set of the vertices

may be a linear space of positive dimension) over a projective mani-

fold of one of the above types 2)-4).
In this note we consider the case z/--1. Details and proofs will

be published elsewhere.
As for non-singular varieties, we have the following

Theorem I (cf. [2] [3] and [4]). Let V be a projective non-singular
variety as above with -1. Then the dualizing sheaf is isomorphic
to (C)(1--n). Moreover, if n3, then V is one of the following types"

1) A hypercubic, d- 3.
2) A complete intersection of two hyperquadrics, d--4.
3) A linear section of the Grassmnn variety parametrizing lines

in P, embedded by the Plicler coordinate, d--5 and n6.
4) (A hyperplane section of) the Segre variety

d--6.
5) The Segre variety PPIP in P. d-6.
6) The blowing-up of p3 a a point, d--7.
7) Veronese threefold (P, )(2)) in P. d=8.


