21. On the Trotter Product Formula

By Tetsuya Koyama and Takashi Ichinose
Department of Mathematics, Hokkaido University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1981)

Introduction. Kato [5] (cf. Kato-Masuda [8]) proved the Trotter product formula s - $\lim _{n \rightarrow \infty}\left[e^{-t A / n} e^{-t B / n}\right]^{n}=e^{-t(A+B)} P$ for the form sum $A+B$ of self-adjoint operators A and B which are bounded from below in a Hilbert space \mathcal{H}. Here P is the orthogonal projection of \mathscr{H} onto the closure of $\mathscr{D}\left(|A|^{1 / 2}\right) \cap \mathscr{D}\left(|B|^{1 / 2}\right)$. The purpose of this paper is to extend this result to prove a product formula for the form sum of self-adjoint operators which are not necessarily bounded from below. The product formula obtained involves a "truncation" procedure.

1. Notations and results. First we consider the case of two operators. Let A and B be self-adjoint operators in a Hilbert space \mathcal{H} with spectral families $\left\{E_{A}(\lambda)\right\}$ and $\left\{E_{B}(\lambda)\right\}$, respectively. Let A_{+}and A_{-}be the positive and negative parts of A, i.e. $A_{+}=A E_{A}([0, \infty)) \geqslant 0$, $A_{-}=-A E_{A}((-\infty, 0)) \geqslant 0$, and $A=A_{+}-A_{-}$. Define B_{+}and B_{-}similarly for B.

Assume that $\mathscr{D}\left(A_{+}^{1 / 2}\right) \subset \mathscr{D}\left(B_{-}^{1 / 2}\right)$ and $\mathscr{D}\left(B_{+}^{1 / 2}\right) \subset \mathscr{D}\left(A_{-}^{1 / 2}\right)$, and that there exist constants $\alpha \geqslant 0$ and $0 \leqslant \beta<1$ such that

$$
\begin{array}{ll}
\left\|A_{-}^{1 / 2} u\right\|^{2} \leqslant \alpha\|u\|^{2}+\beta\left\|B_{+}^{1 / 2} u\right\|^{2}, & u \in \mathscr{D}\left(B_{+}^{1 / 2}\right), \tag{1}\\
\left\|B_{-}^{1 / 2} u\right\|^{2} \leqslant \alpha\|u\|^{2}+\beta\left\|A_{+}^{1 / 2} u\right\|^{2}, & u \in \mathscr{D}\left(A_{+}^{1 / 2}\right) .
\end{array}
$$

Set $\mathscr{D}=\mathscr{D}\left(A_{+}^{1 / 2}\right) \cap \mathscr{D}\left(B_{+}^{1 / 2}\right)$, and let P be the orthogonal projection of \mathscr{H} onto the closure $\overline{\mathscr{D}}$ of \mathscr{D}. Then the quadratic form

$$
u \mapsto\left\|A_{+}^{1 / 2} u\right\|^{2}+\left\|B_{+}^{1 / 2} u\right\|^{2}-\left\|A_{-}^{1 / 2} u\right\|^{2}-\left\|B_{-}^{1 / 2} u\right\|^{2}, \quad u \in \mathscr{D},
$$

is bounded from below and closed. The form sum of A and B is defined as the self-adjoint operator in the Hilbert space $\overline{\mathscr{D}}$ associated with (2) and denoted by $A \dot{+} B$.

For each $0<\tau \leqslant \infty, \mathcal{F}(\tau)$ is the class of bounded real-valued functions $h(t, \lambda)$ on $[0, \tau) \times \boldsymbol{R}$ satisfying the following conditions:
(i) for each fixed $\lambda, h(t, \lambda)$ is continuous in t at $t=0$ with

$$
h(0, \lambda)=1, \quad(\partial / \partial t) h(0, \lambda)=-\lambda ;
$$

(ii) for each fixed $t, h(t, \lambda)$ is Borel measurable in λ with

$$
1 \leqslant h(t, \lambda) \text { for } \lambda<0, h(t, 0)=1 \text { and } 0 \leqslant h(t, \lambda) \leqslant 1 \text { for } \lambda>0 ;
$$

(iii) there is a constant M such that $|1-h(t, \lambda)| \leqslant M t|\lambda|, 0 \leqslant t<\tau$, $\lambda \in \boldsymbol{R}$.

The main result is the following product formula.
Theorem 1. Let $f(t, \lambda)$ and $g(t, \lambda)$ be in $\mathscr{F}(\tau)$ for some $0<\tau \leqslant \infty$, and assume that there exists a constant $z>1$ such that

