21. On the Trotter Product Formula

By Tetsuya KOYAMA and Takashi ICHINOSE Department of Mathematics, Hokkaido University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1981)

Introduction. Kato [5] (cf. Kato-Masuda [8]) proved the Trotter product formula $s\text{-}\lim_{n\to\infty}[e^{-tA/n}e^{-tB/n}]^n=e^{-t(A+B)}P$ for the form sum A+B of self-adjoint operators A and B which are bounded from below in a Hilbert space \mathcal{H} . Here P is the orthogonal projection of \mathcal{H} onto the closure of $\mathcal{D}(|A|^{1/2})\cap\mathcal{D}(|B|^{1/2})$. The purpose of this paper is to extend this result to prove a product formula for the form sum of self-adjoint operators which are not necessarily bounded from below. The product formula obtained involves a "truncation" procedure.

1. Notations and results. First we consider the case of two operators. Let A and B be self-adjoint operators in a Hilbert space $\mathcal H$ with spectral families $\{E_A(\lambda)\}$ and $\{E_B(\lambda)\}$, respectively. Let A_+ and A_- be the positive and negative parts of A, i.e. $A_+ = AE_A([0,\infty)) \geqslant 0$, $A_- = -AE_A((-\infty,0)) \geqslant 0$, and $A = A_+ - A_-$. Define B_+ and B_- similarly for B.

Assume that $\mathcal{D}(A_{+}^{1/2})\subset\mathcal{D}(B_{-}^{1/2})$ and $\mathcal{D}(B_{+}^{1/2})\subset\mathcal{D}(A_{-}^{1/2})$, and that there exist constants $\alpha \geqslant 0$ and $0\leqslant \beta < 1$ such that

$$||A_{-}^{1/2}u||^{2} \leqslant \alpha ||u||^{2} + \beta ||B_{+}^{1/2}u||^{2}, \qquad u \in \mathcal{D}(B_{+}^{1/2}), ||B_{-}^{1/2}u||^{2} \leqslant \alpha ||u||^{2} + \beta ||A_{+}^{1/2}u||^{2}, \qquad u \in \mathcal{D}(A_{+}^{1/2}).$$
 (1)

 $(\partial/\partial t)h(0,\lambda) = -\lambda;$

Set $\mathcal{D} = \mathcal{D}(A_+^{1/2}) \cap \mathcal{D}(B_+^{1/2})$, and let P be the orthogonal projection of \mathcal{H} onto the closure $\overline{\mathcal{D}}$ of \mathcal{D} . Then the quadratic form

$$u\mapsto \|A_+^{1/2}u\|^2+\|B_+^{1/2}u\|^2-\|A_-^{1/2}u\|^2-\|B_-^{1/2}u\|^2, \quad u\in\mathcal{D},$$
 (2) is bounded from below and closed. The form sum of A and B is defined as the self-adjoint operator in the Hilbert space $\overline{\mathcal{D}}$ associated

with (2) and denoted by $A \dotplus B$. For each $0 < \tau \le \infty$, $\mathcal{F}(\tau)$ is the class of bounded real-valued

- functions $h(t, \lambda)$ on $[0, \tau) \times R$ satisfying the following conditions: (i) for each fixed λ , $h(t, \lambda)$ is continuous in t at t=0 with
 - (ii) for each fixed t, $h(t, \lambda)$ is Borel measurable in λ with $1 \le h(t, \lambda)$ for $\lambda < 0$, h(t, 0) = 1 and $0 \le h(t, \lambda) \le 1$ for $\lambda > 0$;
- (iii) there is a constant M such that $|1-h(t,\lambda)| \leq Mt|\lambda|$, $0 \leq t < \tau$, $\lambda \in R$.

The main result is the following product formula.

 $h(0, \lambda) = 1,$

Theorem 1. Let $f(t, \lambda)$ and $g(t, \lambda)$ be in $\mathcal{F}(\tau)$ for some $0 < \tau \le \infty$, and assume that there exists a constant z > 1 such that