13. Note on Cyclic Galois Extensions

By Kozo Sugano

Department of Mathematics, Hokkaido University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1981)

Introduction. As a generalization of central separable algebras, the notion of *H*-separable extension was introduced in [3]. Especially in the case where B is a commutative ring and A is a faithful B-algebra, A is an H-separable Galois extension of B if and only if A is central Galois extension of B. But in the case where B is non-commutative, there are some properties which hold in H-separable extensions of Bbut do not hold in central Galois extensions. Especially by Theorem 11 [2] there is no central cyclic Galois extension, while we could find some examples of *H*-separable cyclic Galois extensions in [11]. The aim of this paper is to show that if A is an H-separable Galois extension of B relative to a cyclic group $G = \langle \sigma \rangle$, then the centralizer of B in A is equal to the center of B (Theorem 1). We will also show that if A is an H-separable extension of B and the center of A is semi-local, then all elements of Aut (A|B) are inner automorphisms (Theorem 2).

Definitions and symbols. Throughout this paper A will be a ring with the identity 1, B a subring of A which contains 1 of A and C and C' the centers of A and B, respectively. For any subset X of A, any ring automorphism σ of A and any A-A-module M, we will set respectively

$$V_{A}(X) = \{a \in A \mid ax = xa \text{ for all } x \text{ in } X\}$$
$$J_{\sigma} = \{a \in A \mid xa = a\sigma(x) \text{ for all } x \text{ in } A\}$$
$$M^{A} = \{m \in M \mid ma = am \text{ for all } a \in A\}.$$

Furthermore, by A_{σ} we denote an A-A-module such that $A_{\sigma} = A$ as left A-module and $ax = a\sigma(x)$ for $a \in A_{\sigma}$ and $x \in A$ as right A-module. Then we see $J_{\sigma} = (A_{\sigma})^{A}$, $V_{A}(B) = A^{B} = (A_{\sigma})^{B}$, $C = V_{A}(A)$ and $C' = V_{B}(B)$. Especially we will denote $D = V_{A}(B)$. A is an H-separable extension of B if and only if $A \otimes_{B} A$ is isomorphic to a direct summand of some $(A \oplus A \oplus \cdots \oplus A)$ (finite direct sum) as A-A-module. This condition is equivalent to the condition that for any A-A-module $M \ D \otimes_{c} M^{A} \cong M^{B}$ by $d \otimes m \rightarrow dm$ for $d \in D$ and $m \in M^{A}$ (see Theorem 1.2 [9]). Hence if A is an H-separable extension of B, $D = (A_{\sigma})^{B} \cong D \otimes_{c} (A_{\sigma})^{A} = D \otimes_{c} J_{\sigma}$. Thus J_{σ} is rank 1 C-projective, since D is C-finitely generated projective by Theorem 1.1 [3], and $DJ_{\sigma} = J_{\sigma}D = D$ for each $\sigma \in \operatorname{Aut}(A|B)$, where Aut (A|B) denotes the group of all automorphisms of A which fix all elements of B. Furthermore, G will always stand for a finite group of