12. Class Number Calculation and Elliptic Unit. I
 Cubic Case

By Ken Nakamula
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Shokichi Iyanaga, m. J. a., Jan. 12, 1981)

Let K be a real cubic number field with the discriminant $D<0$. In the following, an effective algorithm will be given, to calculate the class number h and the fundamental unit $\varepsilon_{1}(>1)$ of K at a time.

Angell [1] has given a table of h and ε_{1} of K for $D>-20000$. In the special case when $K=\boldsymbol{Q}(\sqrt[3]{m})$, a pure cubic number field, Dedekind [5] has given an analytic method to calculate h. In such a pure cubic case, Dedekind's method has been improved by several authors, see [3] and [13]. In all these algorithms, however, it is necessary to compute ε_{1} by Voronoi's algorithm, see [6, pp. 232-230], before the calculation of h.

Our method does not need Voronoi's algorithm, and h and ε_{1} are calculated at a time. The starting point of the method is the index formula on elliptic units given by Schertz, see [11] and [12], and the idea of the algorithm is learned from G. Gras and M.-N. Gras [8]. There is a similar algorithm to compute the class number and fundamental units of a real quartic number field which is not totally real and contains a quadratic subfield, see the author's [10]. The author expects that such an algorithm will be generalized to calculate the class number of a non-galois number field whose galois closure is an abelian extension over an imaginary quadratic number field.
§ 1. Illustration of algorithm. The class number h of K is given by the index of the subgroup generated by the so called "elliptic unit" $\eta_{e}(>1)$ of K, of which the definition will be given in $\S 4$, in the group of positive units of K, see [11]:
(1) $\quad \eta_{e}=\varepsilon_{1}^{h}, \quad$ i.e. $h=\left(\left\langle\varepsilon_{1}\right\rangle:\left\langle\eta_{e}\right\rangle\right)$.

Our method consists of the following steps:
(i) to compute an approximate value of η_{e} (§4),
(ii) to compute the minimal polynomial of η_{e} over \boldsymbol{Q} (Lemma 2),
(iii) for any unit $\xi(>1)$ of K, to give an explicit upper bound $B(\xi)$ of ($\left\langle\varepsilon_{1}\right\rangle:\langle\xi\rangle$) (Proposition 1),
(iv) for any unit $\xi(>1)$ of K and for a natural number μ, to judge whether a real number $\sqrt[\mu]{\xi}(>1)$ is an element to K or not, and to compute the minimal polynomial of $\sqrt[\mu]{\xi}$ over \boldsymbol{Q} if it is an element of K

