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Introduction. We present some rsults on Eisenstein series for
Siegel modular groups. These results concern the action of Hecke
operators and theFourier coefficients. We refer to [3]. for the moti-
vation of these results. We use the notations of [4].

1. Eisenstein series. For integers n>__0 and k>__0, we denote
by M(F) (resp. S(F)) the C-vector space of all Siegel modular (resp.
cusp) forms of degree n and weight k. (See [4, 3] for Siegel modular
forms of degree zero.) The space of Eisenstein series is E(F)
=S(F)+/-, which is the orthogonal complement of S(F) in M(F)
with respect to the Petersson inner product (, }. For each even
integer k>2n, the space E(F) is constructed from M(Fn_) by using
the Eisenstein series, of Langlands [5] and Klingen [1]. To be precise
we define a C-linear map ](-)" M(F)M(F) for Orn and
even k>n+r+ 1 as follows. Each modular form f in M(F) is written
uniquely as f==oE,(.,f) with cusp forms feS(F)(O]r),
where E,(.,f) is the Eisenstein series defined in Klingen [1]. We

kdefine [f](n-)==oE,(.,f). Then [f]( ) is a modular form in
M(F) satisfying -([f](-))=f, where is the Siegel operator. In
particular, ](0) is the identity map, and we write ]=[ ](1) for
simplicity. Then it holds that

E(Fn) [M(F_)] =Image ([ ]" M(F_)M(Fn))
or nl and even k>2n. More precisely we have E(Fn)=[S(F)](-)

and =oE()=[M(r)](n-) or Orn and even k>n+r+l, where
E(F) () in the notation of Maass [6]. For 0<r<n and even k>2n,

](n-, is the following (n r)-times composition of ("(n-r)-th
power")

M(F) > M(F+) >... M(F).
We use also the following extended definition" if f M(F), r]n,

n+r+ 1 even, and F [fief- then we define that IF]-) [f]-
Theorem 1. Let f be an eigen modular form in M(F) for rO

and even k>n+r+l with nr. Then [f](-) is an eigen modular

form in M(F).
Proof. Inthis proof ] runsover ]=0, ..., r. Writef= [f](-)

with f e S(F), then [f](-)= [f](-) e @=0 E(F). Take a Hecke


