119. Higher Order Nonsingular Immersions in Lens Spaces Mod 3

By Teiichi KOBAYASHI
Department of Mathematics, Faculty of Science,
Kochi University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1981)

1. Introduction. H. Suzuki studied in [8] and [9] necessary conditions for the existence of higher order nonsingular immersions of projective spaces in projective spaces by making use of characteristic classes, γ -operations, spin operations, and mod 2 S-relations of stunted real projective spaces.

Let $L^n(q)$ be the (2n+1)-dimensional standard lens space mod q. A continuous map $f: L^n(q) \to L^m(q)$ is said to be of degree $d \in \mathbb{Z}_q$ if $f^*x_m = dx_n$, where x_k is the distinguished generator of $H^2(L^k(q); \mathbb{Z}_q)$ (k=m,n) and $f^*: H^2(L^m(q); \mathbb{Z}_q) \to H^2(L^n(q); \mathbb{Z}_q)$ is the homomorphism induced by f. If m>n, there is a bijection of the set $[L^n(q), L^m(q)]$ of homotopy classes [f] of continuous maps $f: L^n(q) \to L^m(q)$ onto the group \mathbb{Z}_q defined by $[f] \to \deg f$ [5, Lemmas 2.6 and 2.7]. Hence, a continuous map $f: L^n(3) \to L^m(3)$ (n < m) is homotopically non-trivial if and only if $\deg f = \pm 1$. The condition for the existence of homotopically trivial higher order nonsingular immersions of $L^n(q)$ is studied in [6] and [4]. In this paper we are concerned with homotopically non-trivial higher order nonsingular immersions of $L^n(3)$ in $L^m(3)$.

2. Notations and theorems. Let n and k be positive integers. Define an integer A as follows:

$$A = \sum_{j \in A} {n+j \choose j} {n+k-j \choose k-j},$$

where $A = \{j \in Z \mid 0 \le j \le (k-1)/2 \text{ and } 2j \not\equiv k \text{ mod } 3\}$ and $\binom{m}{i} = m!/((m-i)! \ i!)$. For example, A = n+1 if k=1, $=\binom{n+2}{2}$ if k=2, $=(n+1)\binom{n+2}{2}$ if k=3, $=\binom{n+4}{4}+(n+1)\binom{n+3}{3}$ if k=4. Let $\nu = \nu(2n+1,k)$ denote the dimension $\binom{2n+1+k}{k}-1$ of the fibre of the kth order tangent bundle $\tau_k(L^n(3))$ of $L^n(3)$.

Theorem 1. Suppose there exists a homotopically non-trivial kth order nonsingular immersion of $L^n(3)$ in $L^m(3)$ with respect to dissections $\{D_i\}$ on $L^m(3)$. (i) If $2m+1 \ge \nu$, then $\binom{m+1-A}{j} \equiv 0 \mod 3$ for m