117. An Estimate of the Roots of b.Functions by Newton Polyhedra

By Mitsuo Kato
Department of Mathematics, College of Science, University of the Ryukyus
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1981)

Introduction. In this note we give an estimate of the roots of b-functions of certain isolated singularities (Theorem 4.4).

The theory of b-functions and the proof given here are based on Yano [5]. In the real analytic case, the same estimate is given in Varchenko [4].

The author is grateful to Dr. Tamaki Yano for many valuable advices.
§ 1. Let \mathcal{O} be the set of germs of holomorphic functions at the origin O of $C^{n+1}, \mathscr{D}=\mathcal{O}\left[\partial / \partial x_{0}, \cdots, \partial / \partial x_{n}\right], B_{p t}=D \delta$ where δ is the δ function.

For any $f \in \mathcal{O}$, there exist $P(s) \in \mathscr{D}[s], b(s) \in C[s]$ such that $P(s) f^{s+1}$ $=b(s) f^{s}$ (Bernstein [1], Björk [2]). These $b(s)$ form an ideal and the generator of the ideal is called the b-function of f and denoted by $b_{f}(s)$. If $f(0)=0, b_{f}(s)$ is divided by $s+1$ and we put $\tilde{b}_{f}(s)=b_{f}(s) /(s+1) . \quad \mathscr{g}_{f}(s)$ $=\left\{P(s) \in \mathscr{D}[s]: P(s) f^{s}=0\right\}$.

Let $\Gamma_{+}(f)$ be the Newton polyhedron of f and $\left\{\gamma_{1}, \cdots, \gamma_{m}\right\}$ the set of all the n-dimensional faces of $\Gamma_{+}(f)$ not contained in $\left\{x: \prod_{i=0}^{n} x_{i}=0\right\}$, $\gamma_{k}=\left\{\left(x_{0}, \cdots, x_{n}\right): \sum d_{k, i} x_{i}=1\right\}$. Then $d_{k}\left(x_{i}\right)=d_{k, i}$ defines a degree on \mathcal{O}, and we put $X_{k}=\sum d_{k, i} x_{i} \partial / \partial x_{i}$.
§2. From now on we assume that $f \in \mathcal{O}(f(0)=0)$ has an isolated singularity and is nondegenerate with respect to $\Gamma_{+}(f)$.
2.1. Theorem (Kashiwara-Yano). α is a root of $\tilde{b}_{f}(s)$ if and only if there exists a nonzero element Δ of $B_{p t}$ satisfying the following two conditions:

$$
\begin{equation*}
f(x) \Delta=0 \quad \text { and } \quad \partial f / \partial x_{i} \Delta=0, \quad i=0, \cdots, n, \tag{2.1.1}
\end{equation*}
$$ for any $P(s) \in \mathcal{G}_{f}(s), \quad P(\alpha) \Delta=0$.

2.2. Theorem (Teissier [3]). For any ideal I of \mathcal{O}, there exists $\nu_{0} \in N$ such that, for any $\nu \in N, \overline{I^{\nu+\nu_{0}}}=I^{\nu} \cdot \overline{I^{\nu 0}}$, where \bar{I} denotes the integral closure of I.
2.3. Proposition. Let $I=\left(x_{0} \partial f / \partial x_{0}, \cdots, x_{n} \partial f / \partial x_{n}\right) \mathcal{O}$. For any $\nu \in N$ and $g \in \mathcal{O}, g \in \overline{I^{\nu}}$ if and only if $d_{k}(g) \geqq \nu, k=1, \cdots, m$.
§3. Construction of an operator $P(s) \in \mathcal{F}_{f}(s)$. An element of $\mathscr{D}[s] f^{s}$ is uniquely expressed as a finite sum $\sum_{i} a_{i}(x) f[i], a_{i} \in \mathcal{O}, f[i]$

