116. Differentiability of Riemann's Function

By Seiichi ITATSU

Department of Mathematics, Shizuoka University (Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1981)

1. Introduction. In this paper we discuss on the differentiability of the function

$$f(x) = \sum_{n=1}^{\infty} \sin n^2 x / n^2$$
.

Riemann proposed the problem that the function is nowhere differentiable, [2] and [8]. About the problem, J. P. Kahane [3] has investigated lacunary series. It was solved by J. Gerver [4] [5]. First G. H. Hardy [6] proved that the function is not differentiable at the point $\xi\pi$ where ξ is irrational or is a rational of the form (2A+1)/2B or 2A/(4B+1). Later Gerver proved that f(x) is differentiable at all points $(2A+1)\pi/(2B+1)$ with derivative -1/2, and not differentiable at the points $2A\pi/(2B+1)$.

The purpose of this paper is to give a shorter proof of the differentiability as well as a finer estimate of the function at points of rational multiple of π .

We states the following

(1)

Theorem 1. The function

$$F(x) = \sum_{n=1}^{\infty} \exp(in^2\pi x)/n^2\pi i$$

have the following behavior near x=q/p, where p is a positive integer and q is an integer such that q/p is an irreducible fraction,

$$F(x+h) - F(x) = R(p,q)p^{-1/2} \exp\left(\frac{\pi i}{4} \operatorname{sgn} h\right) |h|^{1/2} \operatorname{sgn} h - \frac{h}{2} + O(|h|^{3/2})$$

as $h\rightarrow 0$ where $\operatorname{sgn} h=h/|h|$ if $h\neq 0$, $\operatorname{sgn} h=0$ if h=0, and R(p,q) is a constant defined by

$$(2) \quad R(p,q) = \begin{cases} \left(\frac{q}{p}\right) \exp\left(\frac{-\pi i}{4}(p-1)\right) & \text{if p is odd and q even,} \\ \left(\frac{p}{|q|}\right) \exp\left(\frac{\pi i}{4}q\right) & \text{if p is even and q odd,} \\ 0 & \text{if p and q are odd,} \end{cases}$$

with the Jacobi's symbol (p/q) (see [7]).

This theorem easily shows Gerver's results and gives a finer estimate of f(x) at the points of rational multiple of π . The author wishes to thank Prof. Jean Pierre Kahane for helpful suggestions.