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1. Introduction. In this paper we discuss on the differenti-
ability of the function

f(x)= , sin nx/n.
Riemann proposed the problem that the function is nowhere differenti-
able, [2] and [8]. About the problem, J. P. Kahane [3] has investigated
lacunary series. It was solved by J. Gerver [4] [5]. First G. H.
Hardy [6] proved that the function is not differentiable at the point $
where $ is irrational or is a rational of the form (2A/l)/2B or

2A/(4B/ 1). Later Gerver proved that f(x) is differentiable at all
points (2A/ 1)=/(2B + 1) with derivative 1/2, and not differentiable
at the points 2A/(2B+ 1).

The purpose of this paper is to give a shorter proof of the differ-
entiability as well as a finer estimate of the function at points of ra-
tional multiple of .

We states the following

Theorem 1. The function
F(x) , exp (in2=x)/n2i

have the following behavior near x=q/p, where p is a positive integer
and q is an integer such that q/p is an irreducible fraction,

F(x/h)-F(x)

( i ) ,1/2 h +o(,h,3/2)( 1 ) =R(p, q)p-1/2 exp - sgn h Ih sgn h---
as h-.O where sgn h=h/Ihl if h:/:O, sgn h=0 if h=0, and R(p, q) is a
constant defined by

(-) exp (---/(p--l)) if p is odd and qeven,

( 2 ) R(p, q)= P exp --4- q if p is even and q odd,

0 if p and q are odd,
with the Jacobi’s symbol (p/q) (see [7]).

This theorem easily shows Gerver’s results and gives a finer
estimate of f(x)at the points o rational multiple of . The author
wishes to thank Prof. Jean Pierre Kahane for helpful suggestions.


