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114. Microlocal Analysis of Partial Differential Operators
with Irregular Singularities
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Department of Mathematics, University of Tokyo

(Communicated by Kosaku YOSIDA, M. J. A., Dec. 12, 1981)

We denote the variables in M =R"*! by . =(x,, '), where x, € R and
2’ € R". We investigate partial differential operators of the form
P(zx,0/00)= >, ax)xi'P(3/0x)"
lal<m

microlocally at &*=(0; v —1,0, ---,0)e ¥ —1T*R"*'. Here a,(%), |«
<m, are real analytic in a neighborhood of =0, a,.,,..., =1, and (),
07 m, are some integers >0.

Definition 1. After Aoki [3], we define the irregularity ¢ of

P(z,0/0x) by
a=max{ max (M>,l}

0<j<m~1 m—7j
If ¢=1, Kashiwara and Oshima [5] called the above operator
P(x,d/0x) a partial differential operator with regular singularities along
the hypersurface N={x,=0}. They proved, in this case, that the above
operator P(z, 9/0x) is equivalent to the very simple operator
x5™ : Cy—> Cy,s
(U] (V]
U ——> L™y,
microlocally at &*.
Our purpose is to generalize this result to the case 6 >1. Ifo>1,
we say that the above operator has irregular singularities along the
hypersurface N.

Definition 2. Let ¢>1. We denote by 2, - -+, A.(m, the roots of
the algebraic equation
pLCONE %:‘) a(j,o,...,o)(O)l‘”’:O,
where
n(P)={0<j<m~1; f_(—@L(?)m}.
m—3
We call these constants the characteristic exponents of P.

We investigate such a type of operators by means of holomorphic
microlocal operators, due to Sato, Kawai and Kashiwara [7] and Aoki
[2]. Now we have the following

Theorem 1. Assume that ¢>1 and that

A, if 17,



