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Let P(z, ) be a linear partial differential operator with coefficients
holomorphic in 9, tgCn/, and K--{o(z) =0} be a nonsingular surface.
In the present note we first introduce characteristic indices, subcharac-
teristic indices and the localization on K of P(z, ), which represent
the relationship between the surface K and P(z, ). Next we show
that they are useful, by considering the equation P(z, 3)u(z)=f(z),
where f(z)is holomorphic in 9-K. The proofs of theorems will be
published elsewhere.

1. Definitions. Let C+ be the (n+l)-dimentional complex
space, z-(Zo, z, ., Zn)--(Zo, Z’) denotes its point and ($0, ’) denotes
its dual variable. 3=(30, ,, "", )=(o, 3,). For a linear partial
differential operator A(z, ), A(z, ) means its total symbol.

Now let us define the localization on K of P(z, ), characteristic
indices a (l_i_p) and subcharacteristic indices a, (l_i_q). We
choose the coordinate so that (z)= z0. Hence K- {z0 0}. Let P(z, )
be a linear partial differential operator of order m in a neighbourhood
/2 of z=0. Put

P(z, O)=
(1.1)

[P(z, 3)---- , d (z, 3,)(3o) -,
/=0

where A,(z,’) is homogeneous in ’, wi.th degree 1. We develop
A,(z, ’) with respect to z0 at z0=0,

A,(z, ’)= , A,,,(z’, ’)(z0).
j=O

(1.2)

Let us put

(d,=min {(/q-i) A,,,j(z’, ’)0}.(1.3)
],=min {] A,,,(z’, ’)_0, l/]=d,}.

If A,,(z, ’)--0 for all we put d,=],= + oo. We first give
Definition 1.1. The operator Am,L,j(z’, ,), where J=]m and L/J

=d, is called the localization on K of p(z, 3,).
Let us define characteristic indices a, (l_ip) which were intro-

duced in Ouchi [4]. Consider the set A{(i, d,); O<i,m, dev + oo} in R


