108. Fourier Transforms of Nilpotently Supported Invariant Functions on a Finite Simple Lie Algebra*)

By Noriaki KAWANAKA
Department of Mathematics, Osaka University
(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1981)

0. Let \(\mathbb{G} \) be a connected simple algebraic group defined over a finite field $k=F_q$, and let $g=\text{Lie}(\mathfrak{G})$, the Lie algebra of \mathfrak{G} . We denote by σ the Frobenius morphism, and by G (resp. g) the set \mathfrak{G}_{σ} (resp. \mathfrak{g}_{σ}) of σ -fixed points of \otimes (resp. g). Let Inv (g) be the space of C-valued Ad(G)-invariant functions on g and $Inv(g_0)$ the subspace of Inv(g)consisting of all $f \in \text{Inv}(g)$ supported by the set g_0 of nilpotent elements of g. In § 2, we introduce an operation $f \rightarrow f$ for $f \in \text{Inv}(g)$, and in § 3, we define the 'Fourier transform' $\mathcal{F}(f)$ for $f \in \text{Inv}(g_0)$. The main result (Theorem 3) of this paper says that these two operations coincide with each other on a relatively large subspace $Inv(g_0)'$ of $Inv(g_0)$, if the characteristic of k is not too small. As a corollary, we can prove orthogonality relations (Cor. 2) for $\{\mathcal{F}(\mathbf{1}_{o_{\sigma}})\}_{o_{\sigma}}$, where O runs over the set of σ -stable nilpotent Ad(\mathfrak{G})-orbits in \mathfrak{g} and $1_{\sigma_{\sigma}}$ is the characteristic function of O_{σ} . This can be considered as a counterpart to a result [7, 5.6] of T. A. Springer. (He treated the case of strongly regular (semisimple) orbits rather than nilpotent orbits.) At the end of the paper we present a curious fact (Theorem 4) on the distribution of nilpotent elements in g. Although this result is not directly related to our main results, Theorem 4 and Corollaries 1, 2 show that the variety g_0 of nilpotent elements of g sometimes looks like a 2N-dimensional vector subspace of g, where $2N = \dim g_0$.

Details and proofs are omitted and will be published elsewhere.

Acknowledgement. In 1977, G. Lusztig conjectured Theorem 1 in a private conversation with the author. The author would like to express his hearty thanks to G. Lusztig for sharing precious ideas.

1. Let \mathfrak{B} be a σ -stable Borel subgroup of \mathfrak{B} and \mathfrak{T} a σ -stable maximal torus contained in \mathfrak{B} . Put $B = \mathfrak{B}_{\sigma}$ and $N(\mathfrak{T}) =$ the normalizer of \mathfrak{T} in \mathfrak{B} . Then $(G, B, N(\mathfrak{T})_{\sigma})$ is a Tits system with the Weyl group $W = N(\mathfrak{T})_{\sigma}/\mathfrak{T}_{\sigma}$. Let (W, R) be the associated Coxeter system. Then, to each $J \subset R$, there corresponds a σ -stable parabolic subgroup \mathfrak{P}_J of

^{*&#}x27; This research was supported in part by Grant-in-Aid for Scientific Research.