106. On the Attractivity Properties for the Equation $x''+a(t)f_1(x)g_1(x')x'+b(t)f_2(x)g_2(x')x=e(t, x, x')$

By Sadahisa SAKATA Osaka University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1981)

1. Introduction. In this paper we shall study the asymptotic behavior of solutions of the second order differential equation

(1) $x'' + a(t)f_1(x)g_1(x')x' + b(t)f_2(x)g_2(x')x = e(t, x, x')$ or an equivalent system

(2) x'=y, $y'=-a(t)f_1(x)g_1(y)y-b(t)f_2(x)g_2(y)x+e(t, x, y)$, where a(t)>0, b(t)>0, $f_i(x)>0$ and $g_i(y)>0$ (i=1, 2).

In [1], the following theorem was given by T.A. Burton for the system

(3) $x'=y, \quad y'=-p(x) |y|^{\alpha}y-g(x),$ where p(x)>0 and $0 \le \alpha < 1$.

Theorem (Burton). The zero solution of (3) is globally asymptotically stable if and only if $\int_{-\infty}^{\pm\infty} [p(x)+|g(x)|]dx = \pm \infty$.

In [2], Burton had an extension of this theorem for the following system :

(4) $x'=y, \quad y'=-f(x)h(y)y-g(x)+e(t).$ On the other hand, for the system

(5) $x' = y, \quad y' = -f(x)h(y)y - g(x)k(y) + e(t),$

J. W. Heidel proved in [3] that if $\int_{0}^{\pm\infty} [f(x) + |g(x)|] dx = \pm \infty$ and if k(y) satisfies some conditions, then all solutions of (5) converge to the origin as $t \to \infty$, that is the origin is attractive for (5).

The purpose of this paper is to give a sufficient condition and a necessary condition for the convergence of all solutions of (2) to the origin as $t \rightarrow \infty$ under the following assumptions.

(I) a(t) and b(t) are continuously differentiable in $[0, \infty)$.

(II) $f_1(x)$, $f_2(x)$, $g_1(y)$ and $g_2(y)$ are continuous in \mathbb{R}^1 and e(t, x, y) is continuous in $[0, \infty) \times \mathbb{R}^2$.

 $\begin{aligned} \text{(III)} \quad & \int_{0}^{\infty} \frac{|a'(t)|}{a(t)} dt < \infty \quad and \quad & \int_{0}^{\infty} \frac{|b'(t)|}{b(t)} dt < \infty. \\ \text{(IV)} \quad & \int_{0}^{y} \frac{v}{g_{2}(v)} dv \to \infty \quad as \quad |y| \to \infty. \\ \text{(V)} \quad & \frac{y^{2}}{a_{2}(v)} \leq M \int_{0}^{y} \frac{v}{a_{2}(v)} dv \quad for \ y \in R^{1}, \ where \ M > 0. \end{aligned}$