102. Analytic Hypo-Ellipticity of a System of Microdifferential Equations with Non-Involutory Characteristics

By Toshinori ÔAKU

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1981)

We study the analytic hypo-ellipticity of a system of microdifferential equations whose characteristic variety (in the complex domain) has the form $V = V_1 \cup V_2$; here V_1 and V_2 are regular involutory complex submanifolds with non-involutory intersection. We also assume that the system has regular singularities along V (cf. [4]). In particular, the system $(P_1P_2I_m + A)u = 0$ satisfies the above conditions if P_1 and P_2 are scalar operators such that the Poisson bracket $\{\sigma(P_1), \sigma(P_2)\}$ does not vanish (where σ denotes the principal symbol), A is an $m \times m$ matrix of operators of lower order, and I_m is the unit matrix of degree m (see Corollary in § 1).

Our result (Theorem in § 1) extends a part of the results of Kashiwara-Kawai-Oshima [3] to more general systems. We believe that our result is new even for single equations (see Example 2). The operator discussed in Corollary is contained in the class discussed by Treves [8] if $\sigma(P_2)$ is the complex conjugate of $\sigma(P_1)$. See also Grušin [1] for a class of single partial differential equations.

§1. Statement of the results. Let M be an *n*-dimensional real analytic manifold and X be its complexification. We denote by \mathcal{C}_M the sheaf on $T^*_M X$ of microfunctions, and by \mathcal{C}_X the sheaf on T^*X of micro-differential operators of finite order. Let \mathcal{M} be a system of micro-differential equations (i.e. a coherent \mathcal{C}_X -module) defined on an open subset Ω of T^*X-X . Suppose that the characteristic variety of \mathcal{M} has the form $V = V_1 \cup V_2 \subset \Omega$. We assume the following conditions (see [4] for notations):

(A.1) V_1 and V_2 are *d*-codimensional homogeneous regular involutory submanifolds of Ω , and $V_0 = V_1 \cap V_2$ is non-singular.

(A.2) V_1 and V_2 intersect normally, i.e., $T_pV_1 \cap T_pV_2 = T_pV_0$ for any $p \in V_0$.

(A.3) $\dim V_1 = \dim V_2 = \dim V_0 + 1.$

(A.4) rank V_1 = rank V_2 = rank V_0 .

(A.5) \mathcal{M} has regular singularities along V.

Let p_0 be a point of $V_0 \cap T^*_M X$. We can find a neighborhood $\Omega' \subset \Omega$ of p_0 and a coherent sub- \mathcal{E}_r -module \mathcal{M}_0 of $\mathcal{M}|_{\Omega'}$ such that $\mathcal{E}_x \mathcal{M}_0 = \mathcal{M}|_{\Omega'}$.