102. Analytic Hypo-Ellipticity of a System of Microdifferential Equations with Non-Involutory Characteristics

By Toshinori ÔAKU
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1981)

We study the analytic hypo-ellipticity of a system of microdifferential equations whose characteristic variety (in the complex domain) has the form $V=V_{1} \cup V_{2}$; here V_{1} and V_{2} are regular involutory complex submanifolds with non-involutory intersection. We also assume that the system has regular singularities along V (cf. [4]). In particular, the system $\left(P_{1} P_{2} I_{m}+A\right) u=0$ satisfies the above conditions if P_{1} and P_{2} are scalar operators such that the Poisson bracket $\left\{\sigma\left(P_{1}\right)\right.$, $\left.\sigma\left(P_{2}\right)\right\}$ does not vanish (where σ denotes the principal symbol), A is an $m \times m$ matrix of operators of lower order, and I_{m} is the unit matrix of degree m (see Corollary in § 1).

Our result (Theorem in §1) extends a part of the results of Kashi-wara-Kawai-Oshima [3] to more general systems. We believe that our result is new even for single equations (see Example 2). The operator discussed in Corollary is contained in the class discussed by Treves [8] if $\sigma\left(P_{2}\right)$ is the complex conjugate of $\sigma\left(P_{1}\right)$. See also Grušin [1] for a class of single partial differential equations.
$\S 1$. Statement of the results. Let M be an n-dimensional real analytic manifold and X be its complexification. We denote by \mathcal{C}_{m} the sheaf on $T_{M}^{*} X$ of microfunctions, and by \mathcal{E}_{X} the sheaf on $T^{*} X$ of microdifferential operators of finite order. Let \mathscr{M} be a system of microdifferential equations (i.e. a coherent \mathcal{E}_{X}-module) defined on an open subset Ω of $T^{*} X-X$. Suppose that the characteristic variety of \mathcal{M} has the form $V=V_{1} \cup V_{2} \subset \Omega$. We assume the following conditions (see [4] for notations) :
(A.1) V_{1} and V_{2} are d-codimensional homogeneous regular involutory submanifolds of Ω, and $V_{0}=V_{1} \cap V_{2}$ is non-singular.
(A.2) V_{1} and V_{2} intersect normally, i.e., $T_{p} V_{1} \cap T_{p} V_{2}=T_{p} V_{0}$ for any $p \in V_{0}$.
(A.3) $\quad \operatorname{dim} V_{1}=\operatorname{dim} V_{2}=\operatorname{dim} V_{0}+1$.
(A.4) $\quad \operatorname{rank} V_{1}=\operatorname{rank} V_{2}=\operatorname{rank} V_{0}$.
(A.5) \mathscr{M} has regular singularities along V.

Let p_{0} be a point of $V_{0} \cap T_{M}^{*} X$. We can find a neighborhood $\Omega^{\prime} \subset \Omega$ of p_{0} and a coherent sub- \mathcal{E}_{V}-module \mathscr{M}_{0} of $\left.\mathscr{M}\right|_{\Omega^{\prime}}$ such that $\mathcal{E}_{X} \mathscr{M}_{0}=\left.\mathscr{M}\right|_{\Omega^{\prime}}$.

