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In the previous parts of this series [11], [12], we have given a
systematic treatment of calculus on Gaussian white noise, which is a
reformulation of Hida’s works [1], [2]. In this part we will show
further relations between Hida’s approach and ours. We will use
the same notations and definitions as in Part I and Part II.

8. Multiple Wiener integrals. Here we assume that the Borel
measure on T has no atoms. Let cEo=L(T, v)c’* be a triplet as
in 5 of Part II, and let/2 be the measure of Gaussian white noise on
6’* with characteristic functional exp [-11[I/2]. The multiple Wiener
integral I(F) of F in L(T’, ) is defined as follows

First, I(F) is the limit of (x, } in (L)=L(C*,/), where {$} is
any sequence in ’ with II-Fll0--0, as k-oo. Specially, put W(B)
=L(I), where I denotes the indicator function of a Borel set B with
v(B)< oo. Secondary, let a={B} be a countable Borel partition of T
with v(B)< oo and let a be the collection of all subsets of T of the
form C=B(,B()...B(n), B()e, B()B()= for k:/:m.
For such a set C in a, define

I(Ic)-- W(B()).
Define I(G)--, aI(Ic) for Gn= , aIcwith C . Then we can
define In(F) by
(8.1) I(F)--l.i.m. I(FO, FT-- ,-(C)(F,Ic)Ic,

where a means refinements.
Theorem 8.1. (i) For F L(T, ), put (x):In(F), then we

have

f gn(Ul, .., Un)(Ul)’’" (Un)dpn(Ul, ..., Un).(3)()
JT

(ii) For any in (L), there exist F e e(Tn, pn), n_O, 8.uch that
(x) is decomposed into the following orthogonal sum;

(x)= , I(F) and II) , n. IIF I]2"(Tn,yn).2
n=0 n=O

We now remark that the symmetric L-space/:(T, ) is naturally
identified with the symmetric tensor product space Eon. By Theorems
6.3 and 6.5, we have


