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Introduction. In the theory of elliptic modular forms, it is known
that every modular orm whose Fourier coefficients lie in Z[1/6] is an
isobaric polynomial in E and E with coefficients in Z[1/6], where E
and E are the normalized Eisenstein series of respective weights our
and six.

In this paper, we give an analogous result f.or Hilbert modular
orms for the real quadratic field K-Q(J 5 ). Namely, we show that
every symmetric Hilbert modular orm for Kwhose Fourier coefficients
lie in Z[1/2] can be represented as an isobaric polynomial in certain
orms X., X and X0 with coefficients in Z[1/2].

1. Hilbert modular forms for Q(/5). Let 0g be the ring o
integers in K=Q(v 5 ). Let H denote the upper half-plane. Put/

_-SL(2, o) and for an element r=(ca ) of F, we put r*= (a-c, d’b*)
where the star denotes the conjugation in K.

We let F operate on H=HH by:

,.(z,z.)=(,z, ’*z.)=( az+b a*z+b* )cz+ d c*z+
(z, z) e H.

Further, for any r= (z, z) e H and , e K, we put
N(,r)=,z.,*z, tr(,r)=,z+,*z..

A holomorphic unction f(r) on H is called a symmetric Hilbert
modular form of weight k if it satisfies the ollowing conditions:

(1) For every element ,=(ca )o F,f(r)satisfies a unctional

equation o the orm
f(.)=N(cr+ d)f(r)

(2) f((zl, z2)) f((z2, Zl)).
The set of such functions forms a complex vector space Ac(F). Any
element f(r) in Ac(F) admits a Fourier expansion of the form

f(r)- af() exp [2zitr(r)],
0 mod (1/*/-)

>>0

where the sum extends over all totally positive numbers, in K satisfy-
ing ,----0 mod (1/j 5 ).

For a subring R of C, we put
A(FK),={f e Ac(FK), af(,) e R for all ,0 (1/v 5 ), v>>O or 0}.


