99. On Hilbert Modular Forms

By Shōyū Nagaoka
Department of Mathematics, Hokkaido University
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 1981)

Introduction. In the theory of elliptic modular forms, it is known that every modular form whose Fourier coefficients lie in $Z[1 / 6]$ is an isobaric polynomial in E_{4} and E_{6} with coefficients in $Z[1 / 6]$, where E_{4} and E_{6} are the normalized Eisenstein series of respective weights four and six.

In this paper, we give an analogous result for Hilbert modular forms for the real quadratic field $\boldsymbol{K}=\boldsymbol{Q}(\sqrt{5})$. Namely, we show that every symmetric Hilbert modular form for K whose Fourier coefficients lie in $Z[1 / 2]$ can be represented as an isobaric polynomial in certain forms X_{2}, X_{6} and X_{10} with coefficients in $Z[1 / 2]$.
§ 1. Hilbert modular forms for $\boldsymbol{Q}(\sqrt{5})$. Let o_{K} be the ring of integers in $\boldsymbol{K}=\boldsymbol{Q}(\sqrt{5})$. Let \boldsymbol{H} denote the upper half-plane. Put $\Gamma_{\boldsymbol{K}}$ $=S L\left(2, \mathrm{o}_{K}\right)$ and for an element $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of Γ_{K}, we put $\gamma^{*}=\left(\begin{array}{ll}a^{*} & b^{*} \\ c^{*} & d^{*}\end{array}\right)$ where the star denotes the conjugation in K.

We let $\Gamma_{\boldsymbol{K}}$ operate on $\boldsymbol{H}^{2}=\boldsymbol{H} \times \boldsymbol{H}$ by :

$$
\gamma \cdot\left(z_{1}, z_{2}\right)=\left(\gamma z_{1}, \gamma^{*} z_{2}\right)=\left(\frac{a z_{1}+b}{c z_{1}+d}, \frac{a^{*} z_{2}+b^{*}}{c^{*} z_{2}+d^{*}}\right), \quad\left(z_{1}, z_{2}\right) \in \boldsymbol{H}^{2} .
$$

Further, for any $\tau=\left(z_{1}, z_{2}\right) \in H^{2}$ and $\nu \in K$, we put

$$
N(\nu \tau)=\nu z_{1} \cdot \nu^{*} z_{2}, \quad \operatorname{tr}(\nu \tau)=\nu z_{1}+\nu^{*} z_{2} .
$$

A holomorphic function $f(\tau)$ on \boldsymbol{H}^{2} is called a symmetric Hilbert modular form of weight k if it satisfies the following conditions:
(1) For every element $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of $\Gamma_{K}, f(\tau)$ satisfies a functional equation of the form

$$
f(\gamma \cdot \tau)=N(c \tau+d)^{k} f(\tau)
$$

(2) $f\left(\left(z_{1}, z_{2}\right)\right)=f\left(\left(z_{2}, z_{1}\right)\right)$.

The set of such functions forms a complex vector space $A_{C}\left(\Gamma_{K}\right)_{k}$. Any element $f(\tau)$ in $A_{C}\left(\Gamma_{K}\right)_{k}$ admits a Fourier expansion of the form
where the sum extends over all totally positive numbers ν in K satisfying $\nu \equiv 0 \bmod (1 / \sqrt{5})$.

For a subring R of \boldsymbol{C}, we put

$$
\boldsymbol{A}_{R}\left(\Gamma_{K}\right)_{k}=\left\{f \in A_{C}\left(\Gamma_{K}\right)_{k} \mid a_{f}(\nu) \in R \text { for all } \nu \equiv 0(1 / \sqrt{5}), \nu \gg 0 \text { or } 0\right\} .
$$

