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91. Singular Cauchy Problems for a Class of Weakly
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In these notes singular Cauchy problems of Hamada’s type are
studied in the category of holomorphic functions and hyperfunctions
for a class of hyperbolic differential operators with non-involutive
multiple characteristics. Integral representations of their solutions
are given.

1. Introduction. Let P(t,z,D,, D,) be a differential operator of
order m of the form

P(t,x,D,,D,)=Dr+ > A, 2, D)D",
where D,=(1/+/=1)(@/dt), D,=(1/+/—=1)(3/0x) and A.¢, z, D,) is a dif-
ferential operator at most of order ¢, not containing D,, whose coeffi-
cients are holomorphic functions defined in a neighborhood of (¢, x)
=(0,0) in CxC™.

We assume the following conditions :

(A-1) (Degeneracy of characteristic roots). There exists a non-
negative integer ¢ such that the principal symbol P,(t,z,z,&) of
P(t,z,D,, D,) is expressed in the form

Pm(t’ Z, T, E): fjl (T——tqu(é)),

where 2,(¢) (1<j<'m) are holomorphic functions defined in a conic open
neighborhood £, of &=(@1,0,---,0) in C"—0 and homogeneous of
degree 1 such that
21(5)#:21;(5), if j#k and & € Q,.
(A-2) (Hyperbolicity). 2,(6) A<j<m) are real if & is real.
(A-8) (Levi condition). Let A, (¢, x, &) be the homogeneous part
of A,(t, z, &) of degree 7 with respect to & and let

Ai,j(t’ L, $)=kZ—:0 tkAi,j,k(x, E)
be the Taylor expansion of A, ,({, x,&) with respect to ¢. Then
Ai,j,k(x, &)=0, if k<(g+1Dj—71.

Alinhac [1], Amano [2], Amano-Nakamura [13], Nakamura-Uryu
[6]1, Nakane [7], Taniguchi-Tozaki [10] and Yoshikawa [12] studied the
Cauchy problem for weakly hyperbolic operators of the above type,
and constructed parametrices, using a type of ordinary differential
operators with polynomial coefficients which determine the principal



